A000116 Number of even sequences with period 2n (bisection of A000013).
1, 2, 4, 8, 20, 56, 180, 596, 2068, 7316, 26272, 95420, 349716, 1290872, 4794088, 17896832, 67110932, 252648992, 954444608, 3616828364, 13743921632, 52357746896, 199911300472, 764877836468, 2932031358484, 11258999739560, 43303843861744, 166799988689300
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Programs
-
Haskell
a000116 n = a000116_list !! n a000116_list = bis a000013_list where bis (x:_:xs) = x : bis xs -- Reinhard Zumkeller, Jul 08 2013
-
Maple
with(numtheory): a:= n-> `if`(n=0, 1, add(phi(2*d)*2^(2*n/d), d=divisors(2*n))/(4*n)): seq(a(n), n=0..20); # Alois P. Heinz, Mar 25 2012
-
Mathematica
a[n_] := Sum[ EulerPhi[2d]*2^(2n/d), {d, Divisors[2n]}]/(4n); a[0]=1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Sep 13 2012, after Alois P. Heinz *)
Formula
a(n) ~ 4^(n-1) / n. - Cedric Lorand, Apr 18 2022
Extensions
More terms from David W. Wilson, Jan 13 2000