cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000192 Generalized Euler numbers c(6,n).

Original entry on oeis.org

2, 46, 7970, 3487246, 2849229890, 3741386059246, 7205584123783010, 19133892392367261646, 67000387673723462963330, 299131045427247559446422446, 1658470810032820740402966226850, 11179247066648898992009055586869646, 90035623994788132387893239340761189570
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    egf := sec(6*x)*(cos(x) + cos(5*x)): ser := series(egf, x, 24):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..10); # Peter Luschny, Nov 21 2021
  • Mathematica
    L[ a_, s_, t_:10000 ] := Plus@@Table[ N[ JacobiSymbol[ -a, 2k+1 ](2k+1)^(-s), 30 ], {k, 0, t} ]; c[ a_, n_, t_:10000 ] := (2n)!/Sqrt[ a ](2a/Pi)^(2n+1)L[ a, 2n+1, t ] (* Eric W. Weisstein, Aug 30 2001 *)
  • Sage
    t = PowerSeriesRing(QQ, 't', default_prec=24).gen()
    f = 2 * cos(3 * t) / (2 * cos(4 * t) - 1)
    f.egf_to_ogf().list()[::2] # F. Chapoton, Oct 06 2020

Formula

E.g.f.: 2*cos(3*x) / (2*cos(4*x) - 1). - F. Chapoton, Oct 06 2020
a(n) = (2*n)!*[x^(2*n)](sec(6*x)*(cos(x) + cos(5*x))). - Peter Luschny, Nov 21 2021
a(n) ~ 2^(6*n + 5/2) * 3^(2*n + 1/2) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Apr 15 2022

Extensions

More terms from Eric W. Weisstein, Aug 30 2001