cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A349264 Generalized Euler numbers, a(n) = n!*[x^n](sec(4*x)*(sin(4*x) + 1)).

Original entry on oeis.org

1, 4, 16, 128, 1280, 16384, 249856, 4456448, 90767360, 2080374784, 52975108096, 1483911200768, 45344872202240, 1501108249821184, 53515555843342336, 2044143848640217088, 83285910482761809920, 3605459138582973251584, 165262072909347030040576, 7995891855149741436305408
Offset: 0

Views

Author

Peter Luschny, Nov 20 2021

Keywords

Examples

			Exponential generating functions of generalized Euler numbers in context:
egf1 = sec(1*x)*(sin(x) + 1).
   [A000111, A000364, A000182]
egf2 = sec(2*x)*(sin(x) + cos(x)).
   [A001586, A000281, A000464]
egf3 = sec(3*x)*(sin(2*x) + cos(x)).
   [A007289, A000436, A000191]
egf4 = sec(4*x)*(sin(4*x) + 1).
   [A349264, A000490, A000318]
egf5 = sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x)).
   [A349265, A000187, A000320]
egf6 = sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)).
   [A001587, A000192, A000411]
egf7 = sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)).
   [A349266, A064068, A064072]
egf8 = sec(8*x)*2*(sin(4*x) + cos(4*x)).
   [A349267, A064069, A064073]
egf9 = sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2.
   [A349268, A064070, A064074]
		

Crossrefs

Programs

  • Maple
    sec(4*x)*(sin(4*x) + 1): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..19);
  • Mathematica
    m = 19; CoefficientList[Series[Sec[4*x] * (Sin[4*x] + 1), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
  • PARI
    seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(4*x) + 1)/cos(4*x)))} \\ Andrew Howroyd, Nov 20 2021

A235605 Shanks's array c_{a,n} (a >= 1, n >= 0) that generalizes Euler and class numbers, read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 1, 8, 57, 61, 2, 16, 352, 2763, 1385, 2, 30, 1280, 38528, 250737, 50521, 1, 46, 3522, 249856, 7869952, 36581523, 2702765, 2, 64, 7970, 1066590, 90767360, 2583554048, 7828053417, 199360981, 2, 96, 15872, 3487246, 604935042, 52975108096
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2014

Keywords

Examples

			The array begins:
A000364: 1, 1,    5,     61,       1385,         50521,          2702765,..
A000281: 1, 3,   57,   2763,     250737,      36581523,       7828053417,..
A000436: 1, 8,  352,  38528,    7869952,    2583554048,    1243925143552,..
A000490: 1,16, 1280, 249856,   90767360,   52975108096,   45344872202240,..
A000187: 2,30, 3522,1066590,  604935042,  551609685150,  737740947722562,..
A000192: 2,46, 7970,3487246, 2849229890, 3741386059246, 7205584123783010,..
A064068: 1,64,15872,9493504,10562158592,18878667833344,49488442978598912,..
...
		

Crossrefs

Columns: A000003 (class numbers), A000233, A000362, A000508, ...
Cf. A235606.

Programs

  • Mathematica
    amax = 10; nmax = amax-1; km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[-a, 2k+1]/(2k+1)^s, {k, 0, km}]; c[1, n_, km_] := 2(2n)! L[1, 2n+1, km] (2/Pi)^(2n+1) // Round; c[a_ /; a>1, n_, km_] := (2n)! L[a, 2n+1, km] (2a/Pi)^(2n+1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[ c[a, n, km], {a, 1, amax}, {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[ cc[km] != cc[km/2, km = 2km]]; A235605[a_, n_] := cc[km][[a, n+1 ]]; Table[ A235605[ a-n, n], {a, 1, amax}, {n, 0, a-1}] // Flatten (* Jean-François Alcover, Feb 05 2016 *)
    ccs[b_, nm_] := With[{ns = Range[0, nm]}, (-1)^ns If[Mod[b, 4] == 3, Sum[JacobiSymbol[k, b] (b - 4 k)^(2 ns), {k, 1, (b - 1)/2}], Sum[JacobiSymbol[-b, 2 k + 1] (b - (2 k + 1))^(2 ns), {k, 0, (b - 2)/2}]]];
    csfs[1, nm_] := csfs[1, nm] = (2 Range[0, nm])! CoefficientList[Series[Sec[x], {x, 0, 2 nm}], x^2];
    csfs[b_, nm_] := csfs[b, nm] = Fold[Function[{cs, cc}, Append[cs, cc - Sum[cs[[-i]] (-b^2)^i Binomial[2 Length[cs], 2 i], {i, Length[cs]}]]], {}, ccs[b, nm]];
    rowA235605[a_, nm_] := With[{facs = FactorInteger[a], ns = Range[0, nm]}, With[{b = Times @@ (#^Mod[#2, 2] &) @@@ facs}, If[a == b, csfs[b, nm], If[b == 1, 1/2, 1] csfs[b, nm] Sqrt[a/b]^(4 ns + 1) Times @@ Cases[facs, {p_, e_} /; p > 2 && e > 1 :> 1 - JacobiSymbol[-b, p]/p^(2 ns + 1)]]]];
    arr = Table[rowA235605[a, 10], {a, 10}];
    Flatten[Table[arr[[r - n + 1, n + 1]], {r, 0, Length[arr] - 1}, {n, 0, r}]] (* Matthew House, Sep 07 2024 *)

Formula

Shanks gives recurrences.

Extensions

a(27) removed, a(29)-a(42) added, and typo in name corrected by Lars Blomberg, Sep 10 2015
Offset corrected by Andrew Howroyd, Oct 25 2024

A000191 Generalized tangent numbers d(3, n).

Original entry on oeis.org

2, 46, 3362, 515086, 135274562, 54276473326, 30884386347362, 23657073914466766, 23471059057478981762, 29279357851856595135406, 44855282210826271011257762, 82787899853638102222862479246, 181184428895772987376073015175362, 463938847087789978515380344866258286
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000436, A007289, overview in A349264.

Programs

  • Maple
    gf := (2*sin(t))/(2*cos(2*t) - 1): ser := series(gf, t, 26):
    seq((2*n+1)!*coeff(ser, t, 2*n+1), n=0..23); # Peter Luschny, Oct 17 2020
    a := n -> (-1)^n*(-6)^(2*n+1)*euler(2*n+1, 1/6):
    seq(a(n), n = 0..13); # Peter Luschny, Nov 26 2020
  • Mathematica
    (* Formulas from D. Shanks, see link, p. 690. *)
    L[ a_, s_, t_:10000 ] := Plus@@Table[ N[ JacobiSymbol[ -a, 2k+1 ](2k+1)^(-s), 30 ], {k, 0, t} ]; d[ a_, n_, t_:10000 ] := (2n-1)!/Sqrt[ a ](2a/Pi)^(2n)L[ -a, 2n, t ] (* Eric W. Weisstein, Aug 30 2001 *)

Formula

a(n) = 2*A002439(n). - N. J. A. Sloane, Nov 06 2009
E.g.f.: (2*sin(t))/(2*cos(2*t) - 1), odd terms only. - Peter Luschny, Oct 17 2020
Alternative form for e.g.f.: a(n) = (2*n+1)!*[x^(2*n)](sqrt(3)/(6*x))*(sec(x + Pi/3) + sec(x + 2*Pi/3)). - Peter Bala, Nov 16 2020
a(n) = (-1)^(n+1)*6^(2*n+1)*euler(2*n+1, 1/6). - Peter Luschny, Nov 26 2020

Extensions

More terms from Eric W. Weisstein, Aug 30 2001
Offset set to 0 by Peter Luschny, Nov 26 2020

A000187 Generalized Euler numbers, c(5,n).

Original entry on oeis.org

2, 30, 3522, 1066590, 604935042, 551609685150, 737740947722562, 1360427147514751710, 3308161927353377294082, 10256718523496425979562270, 39490468691102039103925777602, 184856411587530526077816051412830, 1033888847501229495999134528615701122
Offset: 0

Views

Author

Keywords

Examples

			a(3) = 1066590: L_5(7) = Sum_{n >= 0} (-1)^n*( 1/(10*n+1)^7 + 1/(10*n+3)^7 + 1/(10*n+7)^7 + 1/(10*n+9)^7 ) = 1066590*( (1/6!)*sqrt(5)*(Pi/10)^7 ). - _Peter Bala_, Nov 18 2020
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq((-1)^n*(10)^(2*n)*(euler(2*n,1/10) + euler(2*n,3/10)), n = 0..11); # Peter Bala, Nov 18 2020
    egf := sec(5*x)*(cos(2*x) + cos(4*x)): ser := series(egf, x, 26):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
  • Mathematica
    a0=5; nmax=20; km0 = nmax; Clear[cc]; L[a_, s_, km_] := Sum[JacobiSymbol[ -a, 2k+1]/(2k+1)^s, {k, 0, km}]; c[a_, n_, km_] := 2^(2n+1)*Pi^(-2n-1)*(2n)!*a^(2n+1/2)*L[a, 2n+1, km] // Round; cc[km_] := cc[km] = Table[ c[a0, n, km], {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[cc[km] != cc[ km/2, km = 2km]]; A000187 = cc[km] (* Jean-François Alcover, Feb 05 2016 *)

Formula

From the Shanks paper: Consider the Dirichlet series L_a(s) = sum_{k>=0} (-a|2k+1) / (2k+1)^s, where (-a|2k+1) is the Jacobi symbol. Then the numbers c_(a,n) are defined by L_a(2n+1)= (Pi/(2a))^(2n+1)*sqrt(a)* c(a,n)/ (2n)! for a > 1 and n = 0,1,2,... - Sean A. Irvine, Mar 26 2012
From Peter Bala, Nov 18 2020: (Start)
a(n) = (-1)^n*10^(2*n)*( E(2*n,1/10) + E(2*n,3/10) ), where E(n,x) are the Euler polynomials - see A060096.
Row 5 of A235605.
G.f.: A(x) = 2*cos(x)*cos(3*x)/( 2*cos(x)*cos(4*x) - cos(3*x) ) = 2 + 30*x^2/2! + 3522*x^4/4! + ....
Alternative forms:
A(x) = (exp(i*x) + exp(3*i*x) + exp(7*i*x) + exp(9*i*x))/(1 + exp(10*i*x));
A(x) = (sqrt(5)/10)*( sec(x + Pi/5) + sec(x + 2*Pi/5) - sec(x + 3*Pi/5) - sec(x + 4*Pi/5) ). (End)
a(n) = (2*n)!*[x^(2*n)](sec(5*x)*(cos(2*x) + cos(4*x))). - Peter Luschny, Nov 21 2021
a(n) ~ 2^(4*n + 2) * 5^(2*n + 1/2) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Apr 15 2022

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000

A000411 Generalized tangent numbers d(6,n).

Original entry on oeis.org

6, 522, 152166, 93241002, 97949265606, 157201459863882, 357802951084619046, 1096291279711115037162, 4350684698032741048452486, 21709332137467778453687752842, 133032729004732721625426681085926, 982136301747914281420205946546842922, 8597768767880274820173388403096814519366
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    egf := sec(6*x)*(sin(x) + sin(5*x)): ser := series(egf, x, 24):
    seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..12); # Peter Luschny, Nov 21 2021
  • Mathematica
    nmax = 15; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k + 1]/(2 k + 1)^s, {k, 0, km}]; d[a_ /; a > 1, n_, km_] := (2 n - 1)! L[-a, 2 n, km] (2 a/Pi)^(2 n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[6, n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2 km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000411 = dd[km] (* Jean-François Alcover, Feb 08 2016 *)
  • Sage
    t = PowerSeriesRing(QQ, 't', default_prec=24).gen()
    f = 2 * sin(3 * t) / (2 * cos(4 * t) - 1)
    f.egf_to_ogf().list()[1::2] # F. Chapoton, Oct 06 2020

Formula

a(n) = (2*n-1)! * [x^(2*n-1)] 2*sin(3*x) / (2*cos(4*x) - 1). - F. Chapoton, Oct 06 2020
a(n) = (2*n-1)!*[x^(2*n-1)](sec(6*x)*(sin(x) + sin(5*x))). - Peter Luschny, Nov 21 2021

Extensions

a(10)-a(12) from Lars Blomberg, Sep 07 2015

A001587 Generalized Euler numbers.

Original entry on oeis.org

2, 6, 46, 522, 7970, 152166, 3487246, 93241002, 2849229890, 97949265606, 3741386059246, 157201459863882, 7205584123783010, 357802951084619046, 19133892392367261646, 1096291279711115037162, 67000387673723462963330, 4350684698032741048452486, 299131045427247559446422446
Offset: 0

Views

Author

Keywords

Comments

These numbers are related to the values at negative integers of the L-functions for two primitive Dirichlet characters of conductor 24. - F. Chapoton, Oct 05 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A000192 and A000411. Overview in A349264.
Similar sequences: A000111, A225147.

Programs

  • Maple
    egf := sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)): ser := series(egf, x, 20): seq(n!*coeff(ser, x, n), n = 0..17); # Peter Luschny, Nov 21 2021
  • Sage
    t = PowerSeriesRing(QQ, 't').gen()
    f = 2 * (sin(3 * t) + cos(3 * t)) / (2 * cos(4 * t) - 1)
    f.egf_to_ogf().list() # F. Chapoton, Oct 06 2020

Formula

E.g.f.: 2 (sin(3 x) + cos(3 x)) / (2 cos(4 x) - 1). - F. Chapoton, Oct 06 2020
a(n) ~ 2^(2*n + 2) * 3^(n + 1/2) * n^(n + 1/2) / (exp(n) * Pi^(n + 1/2)). - Vaclav Kotesovec, Nov 05 2021
a(n) = n!*[x^n](sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x))). - Peter Luschny, Nov 21 2021

Extensions

a(11)-a(14) from Lars Blomberg, Sep 10 2015

A262143 Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} c(n,i)*x^i/i ) for n >= 1, where c(n,k) is Shanks' array of generalized Euler and class numbers.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 8, 33, 23, 1, 16, 208, 1011, 371, 1, 30, 768, 14336, 65985, 10515, 1, 46, 2211, 94208, 2091520, 7536099, 461869, 1, 64, 5043, 412860, 24313856, 535261184, 1329205857, 28969177, 1, 96, 9984, 1361948, 164276421, 11025776640, 211966861312, 334169853267, 2454072147
Offset: 1

Views

Author

Peter Bala, Sep 13 2015

Keywords

Comments

Shanks' array c(n,k) n >= 1, k >= 0, is A235605.
We conjecture that the entries of the present array are all integers. More generally, we conjecture that for r = 0,1,2,... and for each n >= 1, the expansion of exp( Sum_{i >= 1} c(n,i + r)*x^i/i ) has integer coefficients. The case n = 1 was conjectured by Hanna in A255895.
For the similarly defined array associated with Shanks' d(n,k) array see A262144.

Examples

			The square array begins (row indexing n starts at 1)
1  1    3      23        371         10515           461869 ..
1  3   33    1011      65985       7536099       1329205857 ..
1  8  208   14336    2091520     535261184     211966861312 ..
1 16  768   94208   24313856   11025776640    7748875976704 ..
1 30 2211  412860  164276421  115699670490  126686112278631 ..
1 46 5043 1361948  778121381  787337024970 1239870854518999 ..
1 64 9984 3716096 2891509760 3978693525504 8522989918683136 ..
...
Array as a triangle
1
1  1
1  3    3
1  8   33      23
1 16  208    1011      371
1 30  768   14336    65985        10515
1 46 2211   94208  2091520      7536099       461869
1 64 5043  412860  24313856   535261184   1329205857 28969177
1 96 9984 1361948 164276421 11025776640 211966861312 ...
...
		

Crossrefs

Cf. A000233 (column 1), A000364 (c(1,n)), A000281 (c(2,n)), A000436 (c(3,n)), A000490 (c(4,n)), A000187 (c(5,n)), A000192 (c(6,n)), A064068 (c(7,n)), A235605, A235606, A255881, A255895, A262144, A262145.

A352977 Expansion of e.g.f. cos(2x) cos(3x) / cos(6x) (even powers only).

Original entry on oeis.org

1, 23, 3985, 1743623, 1424614945, 1870693029623, 3602792061891505, 9566946196183630823, 33500193836861731481665, 149565522713623779723211223, 829235405016410370201483113425, 5589623533324449496004527793434823, 45017811997394066193946619670380594785
Offset: 0

Views

Author

F. Chapoton, Apr 13 2022

Keywords

Comments

Only terms of even index are given. Terms of odd index are zero.

Crossrefs

Intermediate case between A002437 and A349429.
Cf. A000192.

Programs

  • Maple
    egf := (cos(x) + cos(5*x))*sec(6*x) / 2: ser := series(egf, x, 32):
    seq(n!*coeff(ser, x ,n), n = 0..24, 2); # Peter Luschny, Apr 13 2022
  • PARI
    my(x='x+O('x^30)); select(x->(x>0), Vec(serlaplace(cos(2*x)*cos(3*x)/cos(6*x)))) \\ Michel Marcus, Apr 13 2022
  • Sage
    x = PowerSeriesRing(QQ, 'x', default_prec=30).gen()
    f = cos(2*x) * cos(3*x) / cos(6*x)
    [cf for cf in f.egf_to_ogf() if cf]
    

Formula

E.g.f.: cos(2*x) * cos(3*x) / cos(6*x).
From Peter Luschny, Apr 13 2022: (Start)
E.g.f.: (cos(x) + cos(5*x))*sec(6*x) / 2, even powers only.
a(n) = A000192(n)/2. (End)
a(n) ~ 2^(6*n + 3/2) * 3^(2*n + 1/2) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Apr 15 2022
Showing 1-8 of 8 results.