A000201 Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.
1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110
Offset: 1
Examples
From Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start) Example for n = 5; a(5) = 8; (Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]): [1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1]. (End)
References
- Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
- M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018.
- J.-P. Allouche, J. Shallit, and G. Skordev, Self-generating sets, integers with missing blocks and substitutions, Discrete Math. 292 (2005) 1-15.
- Peter G. Anderson, The Fibonacci word as a 2-adic number and its continued fraction, Fibonacci Quarterly (2020) Vol. 58, No. 5, 21-24.
- Joerg Arndt, Matters Computational (The Fxtbook), pp.756-757.
- Shiri Artstein-Avidan, Aviezri S. Fraenkel, and Vera T. Sos, A two-parameter family of an extension of Beatty, Discr. Math. 308 (2008), 4578-4588.
- Shiri Artstein-avidan, Aviezri S. Fraenkel, and Vera T. Sos, A two-parameter family of an extension of Beatty sequences, Discrete Math., 308 (2008), 4578-4588.
- E. J. Barbeau, J. Chew, and S. Tanny, A matrix dynamics approach to Golomb's recursion, Electronic J. Combinatorics, #4.1 16 1997.
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 3.
- M. Bunder and K. Tognetti, On the self matching properties of [j tau], Discrete Math., 241 (2001), 139-151.
- Lucas Bustos, Hung Viet Chu, Minchae Kim, Uihyeon Lee, Shreya Shankar, and Garrett Tresch, Integers Having F_{2k} in Both Zeckendorf and Chung-Graham Decompositions, arXiv:2504.20286 [math.NT], 2025. See p. 8.
- L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Fibonacci representations, Fib. Quart., Vol. 10, No. 1 (1972), pp. 1-28.
- L. Carlitz, R. Scoville, and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
- Benoit Cloitre, N. J. A. Sloane, and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane, and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Benoit Cloitre, A study of a family of self-referential sequences, arXiv:2506.18103 [math.GM], 2025. See p. 7.
- I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197.
- J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences.
- H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- P. J. Downey and R. E. Griswold, On a family of nested recurrences, Fib. Quart., 22 (1984), 310-317.
- Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, 43 pages, no date, unpublished.
- Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, unpublished, no date [Cached copy, with permission]
- Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18.
- Robbert Fokkink and Gandhar Joshi, On Cloitre's hiccup sequences, arXiv:2507.16956 [math.CO], 2025. See pp. 8, 16-17.
- Nathan Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823 [math.CO], 2014.
- A. S. Fraenkel, The bracket function and complementary sets of integers, Canadian J. of Math. 21 (1969) 6-27. [History, references, generalization]
- A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353-361 (the case a=1).
- A. S. Fraenkel, Ratwyt, December 28 2011.
- David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Article 07.1.5, 10 (2007) 1-13.
- M. Griffiths, The Golden String, Zeckendorf Representations, and the Sum of a Series, Amer. Math. Monthly, 118 (2011), 497-507.
- Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), #15.11.8.
- Martin Griffiths, A difference property amongst certain pairs of Beatty sequences, The Mathematical Gazette (2018) Vol. 102, Issue 554, Article 102.36, 348-350.
- H. Grossman, A set containing all integers, Amer. Math. Monthly, 69 (1962), 532-533.
- A. J. Hildebrand, Junxian Li, Xiaomin Li, and Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
- T. Karki, A. Lacroix, and M. Rigo, On the recognizability of self-generating sets, JIS 13 (2010) #10.2.2.
- Clark Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, 3 (2000), #00.2.8.
- Clark Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
- Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008) 08.3.3.
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
- Clark Kimberling, Problem Proposals, The Fibonacci Quarterly, vol. 52 #5, 2015, p5-14.
- Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
- Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
- C. Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
- Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (edts.) Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337.[See A317208 for a link.]
- U. Larsson and N. Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
- A. J. Macfarlane, On the fibbinary numbers and the Wythoffarray, arXiv:2405.18128 [math.CO], 2024. See page 2.
- R. J. Mathar, Graphical representation among sequences closely related to this one (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").
- D. J. Newman, Problem 3117, Amer. Math. Monthly, 34 (1927), 158-159.
- D. J. Newman, Problem 5252, Amer. Math. Monthly, 72 (1965), 1144-1145.
- Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff's game, pages 377-410 in "Games of No Chance 3", MSRI Publications Volume 56, 2009.
- R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
- Michel Rigo, Invariant games and non-homogeneous Beatty sequences, Slides of a talk, Journée de Mathématiques Discrètes, 2015.
- Vincent Russo and Loren Schwiebert, Beatty Sequences, Fibonacci Numbers, and the Golden Ratio, The Fibonacci Quarterly, Vol 49, Number 2, May 2011.
- Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024.
- Jeffrey Shallit, Sumsets of Wythoff Sequences, Fibonacci Representation, and Beyond, arXiv:2006.04177 [math.CO], 2020.
- Jeffrey Shallit, Frobenius Numbers and Automatic Sequences, arXiv:2103.10904 [math.NT], 2021.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Classic Sequences
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Math. Bull. 19 (1976) pp. 473-482.
- Richard Southwell and Jianwei Huang, Complex Networks from Simple Rewrite Systems, arXiv preprint arXiv:1205.0596 [cs.SI], 2012. - _N. J. A. Sloane_, Oct 13 2012
- X. Sun, Wythoff's sequence and N-Heap Wythoff's conjectures, Discr. Math., 300 (2005), 180-195.
- J. C. Turner, The alpha and the omega of the Wythoff pairs, Fib. Q., 27 (1989), 76-86.
- Eric Weisstein's World of Mathematics, Beatty Sequence
- Eric Weisstein's World of Mathematics, Golden Ratio
- Eric Weisstein's World of Mathematics, Rabbit Constant
- Eric Weisstein's World of Mathematics, Wythoff's Game
- Eric Weisstein's World of Mathematics, Wythoff Array
- Index entries for sequences related to Beatty sequences
- Index entries for sequences of the a(a(n)) = 2n family
Crossrefs
The permutation A002251 maps between this sequence and A001950, in that A002251(a(n)) = A001950(n), A002251(A001950(n)) = a(n).
First differences give A014675. a(n) = A022342(n) + 1 = A005206(n) + n + 1. a(2n)-a(n)=A007067(n). a(a(a(n)))-a(n) = A026274(n-1). - Benoit Cloitre, Mar 08 2003
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Programs
-
Haskell
a000201 n = a000201_list !! (n-1) a000201_list = f [1..] [1..] where f (x:xs) (y:ys) = y : f xs (delete (x + y) ys) -- Reinhard Zumkeller, Jul 02 2015, Mar 10 2013
-
Maple
Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);
-
Mathematica
Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}] Array[ Floor[ #*GoldenRatio] &, 68] (* Robert G. Wilson v, Apr 17 2010 *)
-
Maxima
makelist(floor(n*(1+sqrt(5))/2),n,1,60); /* Martin Ettl, Oct 17 2012 */
-
PARI
a(n)=floor(n*(sqrt(5)+1)/2)
-
PARI
a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013
-
Python
def aupton(terms): alst, aset = [None, 1], {1} for n in range(1, terms): an = alst[n] + (1 if n not in aset else 2) alst.append(an); aset.add(an) return alst[1:] print(aupton(68)) # Michael S. Branicky, May 14 2021
-
Python
from math import isqrt def A000201(n): return (n+isqrt(5*n**2))//2 # Chai Wah Wu, Jan 11 2022
Formula
Zeckendorf expansion of n (cf. A035517) ends with an even number of 0's.
Other properties: a(1)=1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "n is in the sequence if and only if a(n)+1 is not in the sequence".
a(1) = 1; for n>0, a(n+1) = a(n)+1 if n is not in the sequence, a(n+1) = a(n)+2 if n is in the sequence.
a(a(n)) = floor(n*phi^2) - 1 = A003622(n).
{a(k)} union {a(k)+1} = {1, 2, 3, 4, ...}. Hence a(1) = 1; for n>1, a(a(n)) = a(a(n)-1)+2, a(a(n)+1) = a(a(n))+1. - Benoit Cloitre, Mar 08 2003
{a(n)} is a solution to the recurrence a(a(n)+n) = 2*a(n)+n, a(1)=1 (see Barbeau et al.).
a(n) = A001950(n) - n. - Philippe Deléham, May 02 2004
a(0) = 0; a(n) = n + Max_{k : a(k) < n}. - Vladeta Jovovic, Jun 11 2004
a(Fibonacci(r-1)+j) = Fibonacci(r)+a(j) for 0 < j <= Fibonacci(r-2); 2 < r. - Paul Weisenhorn, Aug 18 2012
With 1 < k and A001950(k-1) < n <= A001950(k): a(n) = 2*n-k; A001950(n) = 3*n-k. - Paul Weisenhorn, Aug 21 2012
Comments