A000207 Number of inequivalent ways of dissecting a regular (n+2)-gon into n triangles by n-1 non-intersecting diagonals under rotations and reflections; also the number of (unlabeled) maximal outerplanar graphs on n+2 vertices.
1, 1, 1, 3, 4, 12, 27, 82, 228, 733, 2282, 7528, 24834, 83898, 285357, 983244, 3412420, 11944614, 42080170, 149197152, 531883768, 1905930975, 6861221666, 24806004996, 90036148954, 327989004892, 1198854697588, 4395801203290, 16165198379984, 59609171366326, 220373278174641
Offset: 1
Examples
E.g., a square (4-gon, n=2) could have either diagonal drawn, C(3)=2, but with essentially only one result. A pentagon (5-gon, n=3) gives C(4)=5, but they each have 2 diags emanating from 1 of the 5 vertices and are essentially the same. A hexagon can have a nuclear disarmament sign (6 ways), an N (3 ways and 3 reflections) or a triangle (2 ways) of diagonals, 6 + 6 + 2 = 14 = C(5), but only 3 essentially different. - _R. K. Guy_, Mar 06 2004 G.f. = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 12*x^6 + 27*x^7 + 82*x^8 + ...
References
- L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98.
- Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See pp. 155, 163, but note that the formulas on p. 163, lines 5 and 6, contain typos. See the correct formulas given here. - N. J. A. Sloane, Apr 18 2014
- B. N. Cyvin, E. Brendsdal, J. Brunvoll and S. J. Cyvin, Isomers of polyenes attached to benzene, Croatica Chemica Acta, 68 (1995), 63-73.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
- R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 79, Table 3.5.1 (the entries for n=16 and n=21 appear to be incorrect).
- M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
- F. R. Bernhart & N. J. A. Sloane, Correspondence, 1977
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Douglas Bowman and Alon Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv preprint arXiv:1209.6270 [math.CO], 2012.
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. See p. 160.
- C. Ceballos, F. Santos, and G. Ziegler, Many Non-equivalent Realizations of the Associahedron, arXiv:1109.5544 [math.MG], 2011-2013, p. 19 and 26.
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- Sean Cleary, Roland Maio, Counting difficult tree pairs with respect to the rotation distance problem, arXiv:2001.06407 [cs.DS], 2020.
- A. S. Conrad and D. K. Hartline, Flexagons
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
- R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967. [Annotated scanned copy]
- F. Harary and E. M. Palmer, On acyclic simplicial complexes, Mathematika 15 1968 115-122.
- F. Harary, E. M. Palmer, and R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974
- F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389 (the entries for n=4 and n=30 appear to be incorrect).
- J. W. Moon and L. Moser, Triangular dissections of n-gons, Canad. Math. Bull., 6 (1963), 175-178.
- T. Motzkin, The hypersurface cross ratio, Bull. Amer. Math. Soc., 51 (1945), 976-984.
- T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360 (the entry for n=10 appears to be incorrect).
- C. O. Oakley and R. J. Wisner, Flexagons, Amer. Math. Monthly 64 (1957), 143-154.
- Hans Rademacher, On the number of certain types of polyhedra, Illinois Journal of Mathematics 9.3 (1965): 361-380. Reprinted in Coll. Papers, Vol II, MIT Press, 1974, pp. 544-564.
- Manfred Scheucher, Hendrik Schrezenmaier, Raphael Steiner, A Note On Universal Point Sets for Planar Graphs, arXiv:1811.06482 [math.CO], 2018.
- Len Smiley, Illustration of initial terms
- Tiberiu Spircu and Stefan V. Pantazi, Again around frieze patterns, arXiv:2002.08211 [math.CO], 2020. See Kn p. 13.
- P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
Crossrefs
Programs
-
Maple
A000108 := proc(n) if n >= 0 then binomial(2*n,n)/(n+1) ; else 0; fi; end: A000207 := proc(n) option remember: local k, it1, it2; if n mod 2 = 0 then k := n/2+2 else k := (n+3)/2 fi: if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi: if (n+2) mod 3 <> 0 then it2 := 0 else it2 := 1 fi: RETURN(A000108(n)/(2*n+4) + it1*A000108(n/2)/4 + A000108(k-2)/2 + it2*A000108((n-1)/3)/3) end: seq(A000207(n),n=1..30) ; # (Revised Maple program from R. J. Mathar, Apr 19 2009) A000207 := proc(n) option remember: local k,it1,it2; if n mod 2 = 0 then k := n/2+1 else k := (n+1)/2 fi: if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi: if n mod 3 <> 0 then it2 := 0 else it2 := 1 fi: RETURN(A000108(n-2)/(2*n) + it1*A000108(n/2+1-2)/4 + A000108(k-2)/2 + it2*A000108(n/3+1-2)/3) end: A000207 := n->(A000108(n)/(n+2)+A000108(floor(n/2))*((1+(n+1 mod 2) /2)))/2+`if`(n mod 3=1,A000108(floor((n-1)/3))/3,0); # Peter Luschny, Apr 19 2009 and M. F. Hasler, Apr 19 2009 G:=(12*(1+x-2*x^2)+(1-4*x)^(3/2)-3*(3+2*x)*(1-4*x^2)^(1/2)-4*(1-4*x^3)^(1/2))/24/x^2: Gser:=series(G,x=0,35): seq(coeff(Gser,x^n),n=1..31); # Emeric Deutsch, Dec 19 2004
-
Mathematica
p=3; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *) a[n_] := (CatalanNumber[n]/(n+2) + CatalanNumber[ Quotient[n, 2]] *((1 + Mod[n-1, 2]/2)))/2 + If[Mod[n, 3] == 1, CatalanNumber[ Quotient[n-1, 3]]/3, 0] ; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Sep 08 2011, after PARI *)
-
PARI
A000207(n)=(A000108(n)/(n+2)+A000108(n\2)*if(n%2,1,3/2))/2+if(n%3==1,A000108(n\3)/3) \\ M. F. Hasler, Apr 19 2009
Formula
a(n) = C(n)/(2*n) + C(n/2+1)/4 + C(k)/2 + C(n/3+1)/3 where C(n) = A000108(n-2) if n is an integer, 0 otherwise and k = (n+1)/2 if n is odd, k = n/2+1 if n is even. Thus C(2), C(3), C(4), C(5), ... are 1, 1, 2, 5, ...
G.f.: (12*(1+x-2*x^2) + (1-4*x)^(3/2) - 3*(3+2*x)*(1-4*x^2)^(1/2) - 4*(1-4*x^3)^(1/2))/(24*x^2). - Emeric Deutsch, Dec 19 2004, from the S. J. Cyvin et al. reference.
a(n) ~ A000108(n)/(2*n+4) ~ 4^n / (2 sqrt(n Pi)*(n + 1)*(n + 2)). - M. F. Hasler, Apr 19 2009
a(n) = A001683(n+2) - A369314(n) = (A001683(n+2) + A208355(n-1)) / 2 = A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
Beineke and Pippert have an explicit formula with six cases (based on the value of n mod 6). - Allan Bickle, Feb 25 2024
Extensions
More terms from James Sellers, Jul 10 2000
Comments