cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000238 Number of oriented trees with n nodes.

Original entry on oeis.org

1, 1, 3, 8, 27, 91, 350, 1376, 5743, 24635, 108968, 492180, 2266502, 10598452, 50235931, 240872654, 1166732814, 5702001435, 28088787314, 139354922608, 695808554300, 3494390057212, 17641695461662, 89495023510876, 456009893224285, 2332997330210440
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, r(x).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000060, A000151, A051437 (linear oriented), A334827 (oriented star-like).
Diagonal of A335362.

Programs

  • Maple
    A:= proc(n) option remember; if n=0 then 0 else unapply(convert(series(x*exp(2* add(A(n-1)(x^k)/k, k=1..n-1)), x=0,n), polynom), x) fi end: a:= n-> coeff(series(A(n+1)(x) *(1-A(n+1)(x)), x=0, n+1), x,n): seq(a(n), n=1..26); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    A[n_][y_] := A[n][y] = If[n == 0, 0, Normal[Series[x*Exp[2*Sum[A[n-1][x^k]/k, {k, 1, n-1}]], {x, 0, n}] /. x -> y]]; a[n_] := SeriesCoefficient[A[n+1][x]*(1-A[n+1][x]), {x, 0, n}]; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Feb 12 2014, translated from Maple *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); Vec(Ser(A)-x*Ser(A)^2)} \\ Andrew Howroyd, May 13 2018

Formula

G.f. = x+x^2+3*x^3+8*x^4+27*x^5+... = R(x)-R(x)^2, where R(x) = g.f. for A000151.
a(n) ~ c * d^n / n^(5/2), where d = A245870 = 5.64654261623294971289271351621..., c = 0.22571615379282714232305... . - Vaclav Kotesovec, Dec 08 2014

Extensions

2 errors corrected by Paul Zimmermann, Mar 01 1996
More terms from N. J. A. Sloane, Mar 10 2007