A000259 Number of certain rooted planar maps.
1, 3, 13, 63, 326, 1761, 9808, 55895, 324301, 1908878, 11369744, 68395917, 414927215, 2535523154, 15592255913, 96419104103, 599176447614, 3739845108057, 23435007764606, 147374772979438, 929790132901804, 5883377105975922, 37328490926964481, 237427707464042693
Offset: 1
Keywords
Examples
For n = 2 the a(2) = 3 is counting the following three paths EEEENN, EEENEN, ENEEEN. The path EENEEN is excluded as it bounces off the line y = (1/2) x at the point (2, 1). - _Michael D. Weiner_, Aug 03 2017
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1211
- D. Birmajer, J. Gil, and M. Weiner, Bounce statistics for rational lattice paths, arXiv:1707.09918 [math.CO], 2017.
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
- W. G. Brown, Enumeration of non-separable planar maps [Annotated scanned copy]
- Anthony G. Shannon, Hakan Akkuş, Yeşim Aküzüm, Ömür Deveci, and Engin Özkan, A partial recurrence Fibonacci link, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 530-537. See Table 2, p. 534.
Crossrefs
Row sums of A046651.
Programs
-
Magma
[&+[(-1)^(k-1)*Binomial(3*n, n-k)*k/n*Fibonacci(k - 2):k in [0..n]]: n in [1..30]]; // Vincenzo Librandi, Aug 05 2017
-
Maple
with(linalg): T := proc(n,k) if k<=n then k*add((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!,j=k..min(n,2*k))/(2*n-k)! else 0 fi end: A := matrix(30,30,T): seq(add(A[i,j],j=1..i),i=1..30); # Emeric Deutsch, Mar 03 2004 R := RootOf(x-t*(t-1)^2, t); ogf := series(1/((1-R-R^2)*(R-1)^2), x=0, 30); # Mark van Hoeij, Nov 08 2011
-
Mathematica
R = Root[#^3-2#^2+#-x&, 1]; CoefficientList[1/((1-R-R^2)*(R-1)^2) + O[x]^30, x] (* Jean-François Alcover, Feb 06 2016, after Mark van Hoeij *) Table[Sum[(-1)^(k - 1)*Binomial[3 n, n - k]*k/n*Fibonacci[k - 2], {k, n}], {n, 21}] (* Michael De Vlieger, Aug 04 2017 *)
-
PARI
a(n) = sum(k = 1, n, (-1)^(k-1)*binomial(3*n,n-k)*k/n*fibonacci(k-2)); \\ Michel Marcus, Aug 04 2017
-
Python
from sympy import binomial, fibonacci def a(n): return sum((-1)**(k - 1)*binomial(3*n, n - k)*k//n*fibonacci(k - 2) for k in range(1, n + 1)) print([a(n) for n in range(1, 21)]) # Indranil Ghosh, Aug 05 2017
Formula
a(n) = Sum_{k = 1..n} (-1)^(k-1)*C(3n, n-k)*k/n*F(k-2) where F(k) is the k-th Fibonacci number (A000045) and F(-1) = 1. - Michael D. Weiner, Aug 03 2017
a(n) ~ 3^(3*n + 1/2) / (5 * sqrt(Pi) * n^(3/2) * 2^(2*n - 1)). - Vaclav Kotesovec, Jul 06 2024
Extensions
More terms from Emeric Deutsch, Mar 03 2004
Comments