cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000259 Number of certain rooted planar maps.

Original entry on oeis.org

1, 3, 13, 63, 326, 1761, 9808, 55895, 324301, 1908878, 11369744, 68395917, 414927215, 2535523154, 15592255913, 96419104103, 599176447614, 3739845108057, 23435007764606, 147374772979438, 929790132901804, 5883377105975922, 37328490926964481, 237427707464042693
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of North-East lattice paths from (0,0) to (2n,n) that begin with a North step, end with an East step, and do not bounce off the line y =1/2 x. Similarly, also the number of paths that begin with an East step, end with a North step, and do not bounce off the line y=1/2 x. - Michael D. Weiner, Aug 03 2017

Examples

			For n = 2 the a(2) = 3 is counting the following three paths EEEENN, EEENEN, ENEEEN. The path EENEEN is excluded as it bounces off the line y = (1/2) x at the point (2, 1). - _Michael D. Weiner_, Aug 03 2017
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A046651.

Programs

  • Magma
    [&+[(-1)^(k-1)*Binomial(3*n, n-k)*k/n*Fibonacci(k - 2):k in [0..n]]: n in [1..30]]; // Vincenzo Librandi, Aug 05 2017
    
  • Maple
    with(linalg): T := proc(n,k) if k<=n then k*add((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!,j=k..min(n,2*k))/(2*n-k)! else 0 fi end: A := matrix(30,30,T): seq(add(A[i,j],j=1..i),i=1..30); # Emeric Deutsch, Mar 03 2004
    R := RootOf(x-t*(t-1)^2, t); ogf := series(1/((1-R-R^2)*(R-1)^2), x=0, 30); # Mark van Hoeij, Nov 08 2011
  • Mathematica
    R = Root[#^3-2#^2+#-x&, 1]; CoefficientList[1/((1-R-R^2)*(R-1)^2) + O[x]^30, x] (* Jean-François Alcover, Feb 06 2016, after Mark van Hoeij *)
    Table[Sum[(-1)^(k - 1)*Binomial[3 n, n - k]*k/n*Fibonacci[k - 2], {k, n}], {n, 21}] (* Michael De Vlieger, Aug 04 2017 *)
  • PARI
    a(n) = sum(k = 1, n, (-1)^(k-1)*binomial(3*n,n-k)*k/n*fibonacci(k-2)); \\ Michel Marcus, Aug 04 2017
    
  • Python
    from sympy import binomial, fibonacci
    def a(n): return sum((-1)**(k - 1)*binomial(3*n, n - k)*k//n*fibonacci(k - 2) for k in range(1, n + 1))
    print([a(n) for n in range(1, 21)]) # Indranil Ghosh, Aug 05 2017

Formula

a(n) = Sum_{k = 1..n} (-1)^(k-1)*C(3n, n-k)*k/n*F(k-2) where F(k) is the k-th Fibonacci number (A000045) and F(-1) = 1. - Michael D. Weiner, Aug 03 2017
a(n) ~ 3^(3*n + 1/2) / (5 * sqrt(Pi) * n^(3/2) * 2^(2*n - 1)). - Vaclav Kotesovec, Jul 06 2024

Extensions

More terms from Emeric Deutsch, Mar 03 2004