A000279 Card matching: coefficients B[n,1] of t in the reduced hit polynomial A[n,n,n](t).
3, 24, 216, 1824, 15150, 124416, 1014888, 8241792, 66724398, 538990800, 4346692680, 35009591040, 281699380560, 2264868936960, 18198009147600, 146142982814208, 1173123636533454, 9413509300965936, 75513633110271264, 605598295606296000, 4855626127979443908, 38924245740546950784
Offset: 1
Keywords
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
Programs
-
Mathematica
f[n_] := HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1]; a[n_] := n^2*(f[n]+4*f[n-1])/(n+1); Array[a, 20] (* Jean-François Alcover, Mar 11 2014, after Mark van Hoeij *)
-
PARI
A000279(n)=3*n*sum(k=0,n-1,binomial(n,k+1)*binomial(n,k)*binomial(n-1,k)) \\ M. F. Hasler, Sep 21 2015
Formula
a(n) = 3n * sum(C(n, k+1)*C(n, k)*C(n-1, k), k=0..n-1).
G.f.: x * (6*hypergeom([4/3, 5/3],[2],27*x^2/(1-2*x)^3)/(1-2*x)^3 - 3*hypergeom([2/3, 4/3],[1],27*x^2/(1-2*x)^3)/(1-2*x)^2). - Mark van Hoeij, Oct 23 2011
a(n) ~ 8^n*sqrt(3)/Pi = 8^n*0.5513... - M. F. Hasler, Sep 21 2015
a(n) = 3n*A262407(n). - M. F. Hasler, Sep 23 2015
Extensions
More terms from Vladeta Jovovic, Apr 26 2000
More terms from Emeric Deutsch, Feb 19 2004
Three lines of data completed and more explicit definition by M. F. Hasler, Sep 21 2015
Comments