cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054747 Number of inequivalent n-state 2-input 2-output automata with respect to an input permutation.

Original entry on oeis.org

3, 76, 4003, 352744, 41876694, 6217447912, 1106509486839, 229553329028386, 54393886281136386, 14493994916221695566, 4289933406949379595583, 1396384878753272032544946, 495758886710258565409900342, 190649910996342815795394676340, 78947451456044942567072721038672, 35023754187171124856459358053765838
Offset: 1

Views

Author

Vladeta Jovovic, Apr 22 2000

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, 1973.

Crossrefs

Euler transform of A000282.

Programs

  • PARI
    A054747(n)={local(p=vector(n)); local(q=matrix(2,2)); q[1,1] = 2; q[1,2] = 0; q[2,1]=0; q[2,2]=1; my(S=0, A() = sum(j=1, 2, prod(r=1, n, prod(s=1, 2, (2*sumdiv(lcm(r,s), d, if(d < n+1, d*p[d], 0)))^(p[r]*q[j,s]*gcd(r,s)))))/2,
    inc()=!forstep(i=n, 1, -1, p[i]n, p[i]=n); next(2))); t==n && S+ = A()/prod(i=1, n, i^p[i]*p[i]!)); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 08 2021

Extensions

Terms a(14)-a(16) from Petros Hadjicostas, Mar 08 2021

A054053 Number of nonisomorphic connected n-state automata with binary inputs and outputs.

Original entry on oeis.org

4, 126, 7336, 665120, 80038860, 11992785628, 2148752458832, 448000621008112, 106551292402319492, 28471977293653977714, 8445425847422222518488, 2753705028193531309816184, 978990839708922602845440908, 376905974468378563863272876248, 156221832236610857130449469228920, 69360325968752963320307268181976608
Offset: 1

Views

Author

Vladeta Jovovic, Apr 29 2000

Keywords

Comments

Inverse Euler transform of A054052.

References

  • F. Harary and E. Palmer, Graphical Enumeration, 1973. [See Section 6.5, pp. 146-150.]

Crossrefs

Programs

  • PARI
    /* This program is a modification of Christian G. Bower's PARI program for the inverse Euler transform from the link above. */
    lista(nn) = {local(A=vector(nn+1)); for(n=1, nn+1, A[n]=if(n==1, 1, A054052(n-1))); local(B=vector(#A-1, n, 1/n), C); A[1] = 1; C = log(Ser(A)); A=vecextract(A, "2.."); for(i=1, #A, A[i] = polcoeff(C, i)); A = dirdiv(A, B); } \\ Petros Hadjicostas, Mar 08 2021

Extensions

Terms a(14)-a(16) from Petros Hadjicostas, Mar 08 2021

A129622 Number of minimal deterministic finite automata (DFA) with n states on a two-letter alphabet.

Original entry on oeis.org

0, 2, 24, 1028, 56014, 3705306, 286717796, 25493886852
Offset: 0

Views

Author

Johnicholas Hines (johnicholas.hines(AT)gmail.com), May 30 2007

Keywords

Comments

DFAs are counted up to equivalence, where two DFAs are equivalent if they recognize the same language. Therefore, a(n) is the number of languages on {a,b} recognizable by a minimal complete DFA of n states. A minimal DFA is one which is not equivalent to any smaller DFA. - Arthur O'Dwyer, Jul 26 2024
A DFA requires at least one state: the initial state. Since there are no DFAs with zero states, a(0)=0. - Arthur O'Dwyer, Jul 26 2024

Examples

			From _Arthur O'Dwyer_, Jul 26 2024: (Start)
For n=1 the a(1)=2 distinct DFAs are
  State 1: a->1, b->1
  State 1: a->1, b->1, accepting
The first of these accepts the empty language; the second accepts the universal language.
For n=3, the following two DFAs are equivalent, since they accept the same language:
  State 1: a->2, b->2, accepting; State 2: a->1, b->3; State 3: a->2, b->2
  State 1: a->3, b->3, accepting; State 2: a->3, b->3; State 3: a->1, b->2
The following DFA is not counted at all, because it is minimizable to (that is, accepts the same language as) a two-state DFA:
  State 1: a->1, b->2; State 2: a->2, b->3, accepting; State 3: a->3, b->2, accepting
(End)
		

Crossrefs

Formula

A059412(n) <= a(n). - Arthur O'Dwyer, Jul 26 2024

Extensions

a(0)=0 and a(1)=2 prepended by Arthur O'Dwyer, Jul 26 2024
Showing 1-3 of 3 results.