cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000282 Finite automata.

Original entry on oeis.org

3, 70, 3783, 338475, 40565585, 6061961733, 1083852977811, 225615988054171, 53595807366038234, 14308700593468127485, 4241390625289880226714, 1382214286200071777573643, 491197439886557439295166226, 189044982636675290371386547592, 78334771617452038208125184627931, 34771576300926271400714044414858372
Offset: 1

Views

Author

Keywords

Comments

Given the name of A054747, another name for this sequence can be "Number of inequivalent n-state 2-input 2-output connected automata with respect to an input permutation." - Petros Hadjicostas, Mar 08 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    /* This program is a modification of Christian G. Bower's PARI program for the inverse Euler transform from the link above. */
    lista(nn) = {local(A=vector(nn+1)); for(n=1, nn+1, A[n]=if(n==1, 1, A054747(n-1))); local(B=vector(#A-1,n,1/n),C); A[1] = 1; C = log(Ser(A)); A=vecextract(A,"2.."); for(i=1, #A, A[i] = polcoeff(C,i)); A = dirdiv(A,B); } \\ Petros Hadjicostas, Mar 08 2021

Formula

Inverse Euler transform of A054747. - Petros Hadjicostas, Mar 08 2021

Extensions

More terms from Vladeta Jovovic, Apr 22 2000
Terms a(14)-a(16) from Petros Hadjicostas, Mar 08 2021

A054052 Number of nonisomorphic n-state automata with binary inputs and outputs.

Original entry on oeis.org

4, 136, 7860, 703760, 83731616, 12434579448, 2213014106124, 459106576445584, 108787771126443552, 28987989805582701000, 8579866813375037411844, 2792769757495835238342624, 991517773420290134796904064, 381299821992680629261308708504, 157894902912089771345216547890976, 70047508374342247037912201234627760
Offset: 1

Views

Author

Vladeta Jovovic, Apr 29 2000

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, 1973.

Crossrefs

Programs

  • PARI
    A054052(n) = {local(p=vector(n)); my(S=0, A() = prod(i=1, n, sumdiv(i, d, 2*d*p[d])^(2*p[i])), inc()=!forstep(i=n, 1, -1, p[i]n, p[i]=n); next(2))); t==n && S+ = A()/prod(i=1, n, i^p[i]*p[i]!)); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 08 2021

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...), where fixA[s_1, s_2, ...] = Product_{i>=1} (Sum_{d|i} 2*d*s_d)^(2*s_i). - [Modified from Christian G. Bower's contribution in A054050 by Petros Hadjicostas, Mar 08 2021 using Theorem 6.1 in Harrison (1965) with k = 2 inputs and p = 2 outputs.]

Extensions

Terms a(14)-a(16) from Petros Hadjicostas, Mar 08 2021.
Showing 1-2 of 2 results.