cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060420 Least decimal digit in n-th prime.

Original entry on oeis.org

2, 3, 5, 7, 1, 1, 1, 1, 2, 2, 1, 3, 1, 3, 4, 3, 5, 1, 6, 1, 3, 7, 3, 8, 7, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 0, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 1, 1, 1, 3, 3, 3, 4, 4, 1, 3, 4, 4, 4, 1, 4, 0, 0, 1, 2, 1, 4, 5, 3, 5, 1
Offset: 1

Views

Author

Labos Elemer, Apr 05 2001

Keywords

Comments

a(n) = 0 mostly. - David A. Corneth, Aug 29 2019

Crossrefs

Programs

  • PARI
    a(n) = vecmin(digits(prime(n))); \\ Michel Marcus, Jan 26 2017

Formula

Table[Min[IntegerDigits[Prime[w]]], {w, 1, 1000}]

Extensions

Offset 1 from Michel Marcus, Aug 29 2019

A054053 Number of nonisomorphic connected n-state automata with binary inputs and outputs.

Original entry on oeis.org

4, 126, 7336, 665120, 80038860, 11992785628, 2148752458832, 448000621008112, 106551292402319492, 28471977293653977714, 8445425847422222518488, 2753705028193531309816184, 978990839708922602845440908, 376905974468378563863272876248, 156221832236610857130449469228920, 69360325968752963320307268181976608
Offset: 1

Views

Author

Vladeta Jovovic, Apr 29 2000

Keywords

Comments

Inverse Euler transform of A054052.

References

  • F. Harary and E. Palmer, Graphical Enumeration, 1973. [See Section 6.5, pp. 146-150.]

Crossrefs

Programs

  • PARI
    /* This program is a modification of Christian G. Bower's PARI program for the inverse Euler transform from the link above. */
    lista(nn) = {local(A=vector(nn+1)); for(n=1, nn+1, A[n]=if(n==1, 1, A054052(n-1))); local(B=vector(#A-1, n, 1/n), C); A[1] = 1; C = log(Ser(A)); A=vecextract(A, "2.."); for(i=1, #A, A[i] = polcoeff(C, i)); A = dirdiv(A, B); } \\ Petros Hadjicostas, Mar 08 2021

Extensions

Terms a(14)-a(16) from Petros Hadjicostas, Mar 08 2021
Showing 1-2 of 2 results.