A000294 Expansion of g.f. Product_{k >= 1} (1 - x^k)^(-k*(k+1)/2).
1, 1, 4, 10, 26, 59, 141, 310, 692, 1483, 3162, 6583, 13602, 27613, 55579, 110445, 217554, 424148, 820294, 1572647, 2992892, 5652954, 10605608, 19765082, 36609945, 67405569, 123412204, 224728451, 407119735, 733878402, 1316631730, 2351322765, 4180714647, 7401898452, 13051476707, 22922301583, 40105025130, 69909106888, 121427077241, 210179991927, 362583131144
Offset: 0
References
- R. Chandra, Tables of solid partitions, Proceedings of the Indian National Science Academy, 26 (1960), 134-139.
- V. S. Nanda, Tables of solid partitions, Proceedings of the Indian National Science Academy, 19 (1953), 313-314.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Alimzhan Amanov and Damir Yeliussizov, MacMahon's statistics on higher-dimensional partitions, arXiv:2009.00592 [math.CO], 2020. Mentions this sequence.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
- R. Chandra, Tables of solid partitions, Proceedings of the Indian National Science Academy, 26 (1960), 134-139. [Annotated scanned copy]
- Nicolas Destainville and Suresh Govindarajan, Estimating the asymptotics of solid partitions, J. Stat. Phys. 158 (2015) 950-967; arXiv:1406.5605 [cond-mat.stat-mech], 2014.
- Steven Finch, Integer Partitions, September 22, 2004, page 2. [Cached copy, with permission of the author]
- Vaclav Kotesovec, Graph - The asymptotic ratio
- Ville Mustonen and R. Rajesh, Numerical Estimation of the Asymptotic Behaviour of Solid Partitions of an Integer, J. Phys. A 36 (2003), no. 24, 6651-6659; arXiv:cond-mat/0303607 [cond-mat.stat-mech], 2003.
- V. S. Nanda, Tables of solid partitions, Proceedings of the Indian National Science Academy, 19 (1953), 313-314. [Annotated scanned copy]
- Damir Yeliussizov, Bounds on the number of higher-dimensional partitions, arXiv:2302.04799 [math.CO], 2023.
Crossrefs
Programs
-
Maple
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> n*(n+1)/2): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
-
Mathematica
a[0] = 1; a[n_] := a[n] = 1/(2*n)*Sum[(DivisorSigma[2, k]+DivisorSigma[3, k])*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 05 2014, after Vladeta Jovovic *) nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)/2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 11 2015 *)
-
PARI
a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^3/k, x*O(x^n))), n)) \\ Joerg Arndt, Apr 16 2010
-
SageMath
# uses[EulerTransform from A166861] b = EulerTransform(lambda n: binomial(n+1, 2)) print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
Formula
a(n) = (1/(2*n))*Sum_{k=1..n} (sigma[2](k)+sigma[3](k))*a(n-k). - Vladeta Jovovic, Sep 17 2002
a(n) ~ Pi^(1/24) * exp(1/24 - Zeta(3) / (8*Pi^2) + 75*Zeta(3)^3 / (2*Pi^8) - 15^(5/4) * Zeta(3)^2 * n^(1/4) / (2^(7/4)*Pi^5) + 15^(1/2) * Zeta(3) * n^(1/2) / (2^(1/2)*Pi^2) + 2^(7/4) * Pi * n^(3/4) / (3*15^(1/4))) / (A^(1/2) * 2^(157/96) * 15^(13/96) * n^(61/96)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 11 2015
G.f.: exp(Sum_{k>=1} (sigma_2(k) + sigma_3(k))*x^k/(2*k)). - Ilya Gutkovskiy, Aug 21 2018
Extensions
More terms from Sascha Kurz, Aug 15 2002
Comments