cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000303 Number of permutations of [n] in which the longest increasing run has length 2.

Original entry on oeis.org

0, 1, 4, 16, 69, 348, 2016, 13357, 99376, 822040, 7477161, 74207208, 797771520, 9236662345, 114579019468, 1516103040832, 21314681315997, 317288088082404, 4985505271920096, 82459612672301845, 1432064398910663704, 26054771465540507272
Offset: 1

Views

Author

Keywords

Examples

			a(3)=4 because we have (13)2, 2(13), (23)1, 3(12), where the parentheses surround increasing runs of length 2.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261, Table 7.4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A008304. Other columns: A000402, A000434, A000456, A000467, A230055.
Equals 1 less than A049774. - Greg Dresden, Feb 22 2020

Programs

  • Mathematica
    b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u] + o < k, 0, Sum[b[u + j - 1, o - j, t + 1, k], {j, 1, o}] + Sum[b[u - j, o + j - 1, 1, k], {j, 1, u}]]];
    T[n_, k_] := b[0, n, 0, k] - b[0, n, 0, k + 1];
    a[n_] := T[n, 2];
    Array[a, 30] (* Jean-François Alcover, Jul 19 2018, after Alois P. Heinz *)

Extensions

Better description from Emeric Deutsch, May 08 2004
Edited and extended by Max Alekseyev, May 20 2012