A000310 Coefficients of iterated exponentials.
1, 4, 26, 234, 2696, 37919, 630521, 12111114, 264051201, 6445170229, 174183891471, 5164718385337, 166737090160871, 5822980248613990, 218756388226681557, 8797723991458469015, 377159237609540937788, 17170729962232112834302, 827382365085791968518198, 42070004707327023844695198
Offset: 1
Keywords
References
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 300
Crossrefs
Programs
-
Mathematica
max = 20; CoefficientList[-Log[1 + Log[1 + Log[1 + Log[1 - x]]]]/x + O[x]^max, x]*Range[max]! (* Jean-François Alcover, Feb 07 2016 *)
-
PARI
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1))); a(n) = T(n, 4); \\ Seiichi Manyama, Feb 11 2022
-
PARI
my(x='x+O('x^40)); Vec(serlaplace(-log(1+log(1+log(1+log(1-x)))))); \\ Michel Marcus, Feb 11 2022
Formula
E.g.f.: -log(1+log(1+log(1+log(1-x)))).