cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000352 One half of the number of permutations of [n] such that the differences have three runs with the same signs.

Original entry on oeis.org

5, 29, 118, 418, 1383, 4407, 13736, 42236, 128761, 390385, 1179354, 3554454, 10696139, 32153963, 96592972, 290041072, 870647517, 2612991141, 7841070590, 23527406090, 70590606895, 211788597919, 635399348208, 1906265153508, 5718929678273, 17157057470297
Offset: 4

Views

Author

Keywords

Examples

			a(4)=5 because the permutations of [4] with three sign runs are 1324, 1423, 2143, 2314, 2413 and their reversals.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #13
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = T(n, 3), where T(n, k) is the array defined in A008970.

Programs

  • Maple
    A000352:=-(-5+6*z)/(3*z-1)/(2*z-1)/(z-1)**2; # [Conjectured by Simon Plouffe in his 1992 dissertation.] [correct up to offset]
    # second Maple program:
    a:= n-> (<<0|0|1|2>>. <<7|1|0|0>, <-17|0|1|0>, <17|0|0|1>, <-6|0|0|0>>^n)[1, 4]:
    seq(a(n), n=4..30);  # Alois P. Heinz, Aug 26 2008
  • Mathematica
    nn = 40; CoefficientList[Series[x^4*(5 - 6*x)/((1 - 3*x)*(1 - 2*x)*(1 - x)^2), {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)
  • PARI
    a(n) = (3^n-4*2^n-2*n+11)/4;

Formula

a(n) = (3^n-4*2^n-2*n+11)/4, n>=4. - Tim Monahan, Jul 14 2011
G.f.: x^4*(5-6*x)/((1-3*x)*(1-2*x)*(1-x)^2).
Limit_{n->infinity} 4*a(n)/3^n = 1. - Philippe Deléham, Feb 22 2004

Extensions

Edited by Emeric Deutsch, Feb 18 2004