A000353 Primes p == 7, 19, 23 (mod 40) such that (p-1)/2 is also prime.
7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2903, 3023, 3167, 3623, 3779, 3863, 4007, 4127, 4139, 4259, 4703, 5087, 5099, 5807, 5927, 5939, 6047, 6659, 6779, 6899, 6983, 7247
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Robert A. J. Matthews, Maximally periodic reciprocals, Bull. Institute of Mathematics and Its Applications, vol. 28, p. 147-148, 1992.
- Wikipedia, Sophie Germain prime
- Index entries for sequences related to decimal expansion of 1/n.
Programs
-
Maple
q:= p-> irem(p, 40) in {7, 19, 23} and andmap(isprime, [p, (p-1)/2]): select(q, [$1..10000])[]; # Alois P. Heinz, Oct 31 2023
-
Mathematica
Select[Prime[Range[1000]], MatchQ[Mod[#, 40], 7|19|23] && PrimeQ[(#-1)/2]&] (* Jean-François Alcover, Feb 07 2016 *)
-
PARI
is(n)=my(k=n%40); (k==7||k==19||k==23) && isprime(n\2) && isprime(n) \\ Charles R Greathouse IV, Nov 20 2014
Formula
a(n) = 2*A000355(n)+1. - Reinhard Zumkeller, Feb 10 2009
Extensions
More terms from Reinhard Zumkeller, Feb 10 2009
Comments