cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert A. J. Matthews

Robert A. J. Matthews's wiki page.

Robert A. J. Matthews has authored 2 sequences.

A000355 Primes p == 3, 9, 11 (mod 20) such that 2p+1 is also prime.

Original entry on oeis.org

3, 11, 23, 29, 83, 89, 131, 191, 251, 431, 443, 491, 509, 683, 743, 809, 911, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1451, 1511, 1583, 1811, 1889, 1931, 2003, 2063, 2069, 2129, 2351, 2543, 2549, 2903, 2963, 2969, 3023, 3329, 3389, 3449, 3491, 3623, 3803
Offset: 1

Keywords

Comments

a(n) = (A000353(n)-1)/2. - Reinhard Zumkeller, Feb 10 2009

Crossrefs

Subset of A005384.
Cf. A000353.

Programs

  • Maple
    q:= p-> irem(p, 20) in {3, 9, 11} and andmap(isprime, [p,2*p+1]):
    select(q, [$1..10000])[];  # Alois P. Heinz, Oct 31 2023
  • Mathematica
    Select[Prime[Range[1000]], MatchQ[Mod[#, 20], 3|9|11] && PrimeQ[2#+1]&] (* Jean-François Alcover, Feb 07 2016 *)
  • PARI
    is(n)=my(k=n%20); (k==3||k==9||k==11) && isprime(2*n+1) && isprime(n) \\ Charles R Greathouse IV, Nov 20 2014

Extensions

More terms from Reinhard Zumkeller, Feb 10 2009

A000353 Primes p == 7, 19, 23 (mod 40) such that (p-1)/2 is also prime.

Original entry on oeis.org

7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2903, 3023, 3167, 3623, 3779, 3863, 4007, 4127, 4139, 4259, 4703, 5087, 5099, 5807, 5927, 5939, 6047, 6659, 6779, 6899, 6983, 7247
Offset: 1

Keywords

Comments

The decimal expansion of 1/a(n) will produce a stream of a(n)-1 pseudo-random digits. - Reinhard Zumkeller, Feb 10 2009
The condition in the name is sufficient for primes p such that the decimal expansion of 1/p recurs after p-1 digits, which is the maximum-possible cycle length. - Robert A. J. Matthews, Oct 31 2023

Crossrefs

Subset of A005385.
Subsequence of A001913, A006883.

Programs

  • Maple
    q:= p-> irem(p, 40) in {7, 19, 23} and andmap(isprime, [p, (p-1)/2]):
    select(q, [$1..10000])[];  # Alois P. Heinz, Oct 31 2023
  • Mathematica
    Select[Prime[Range[1000]], MatchQ[Mod[#, 40], 7|19|23] && PrimeQ[(#-1)/2]&] (* Jean-François Alcover, Feb 07 2016 *)
  • PARI
    is(n)=my(k=n%40); (k==7||k==19||k==23) && isprime(n\2) && isprime(n) \\ Charles R Greathouse IV, Nov 20 2014

Formula

a(n) = 2*A000355(n)+1. - Reinhard Zumkeller, Feb 10 2009

Extensions

More terms from Reinhard Zumkeller, Feb 10 2009