A000355 Primes p == 3, 9, 11 (mod 20) such that 2p+1 is also prime.
3, 11, 23, 29, 83, 89, 131, 191, 251, 431, 443, 491, 509, 683, 743, 809, 911, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1451, 1511, 1583, 1811, 1889, 1931, 2003, 2063, 2069, 2129, 2351, 2543, 2549, 2903, 2963, 2969, 3023, 3329, 3389, 3449, 3491, 3623, 3803
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Robert A. J. Matthews, Maximally periodic reciprocals, Bull. Institute of Mathematics and Its Applications, vol. 28, p. 147-148, 1992.
Programs
-
Maple
q:= p-> irem(p, 20) in {3, 9, 11} and andmap(isprime, [p,2*p+1]): select(q, [$1..10000])[]; # Alois P. Heinz, Oct 31 2023
-
Mathematica
Select[Prime[Range[1000]], MatchQ[Mod[#, 20], 3|9|11] && PrimeQ[2#+1]&] (* Jean-François Alcover, Feb 07 2016 *)
-
PARI
is(n)=my(k=n%20); (k==3||k==9||k==11) && isprime(2*n+1) && isprime(n) \\ Charles R Greathouse IV, Nov 20 2014
Extensions
More terms from Reinhard Zumkeller, Feb 10 2009
Comments