cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000358 Number of binary necklaces of length n with no subsequence 00, excluding the necklace "0".

Original entry on oeis.org

1, 2, 2, 3, 3, 5, 5, 8, 10, 15, 19, 31, 41, 64, 94, 143, 211, 329, 493, 766, 1170, 1811, 2787, 4341, 6713, 10462, 16274, 25415, 39651, 62075, 97109, 152288, 238838, 375167, 589527, 927555, 1459961, 2300348, 3626242, 5721045, 9030451, 14264309, 22542397, 35646312, 56393862, 89264835, 141358275
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of inequivalent compositions of n into parts 1 and 2 where two compositions are considered to be equivalent if one is a cyclic rotation of the other. a(6)=5 because we have: 2+2+2, 2+2+1+1, 2+1+2+1, 2+1+1+1+1, 1+1+1+1+1+1. - Geoffrey Critzer, Feb 01 2014
Moebius transform is A006206. - Michael Somos, Jun 02 2019

Examples

			G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 5*x^7 + 8*x^8 + 10*x^9 + ... - _Michael Somos_, Jun 02 2019
Binary necklaces are: 1; 01, 11; 011, 111; 0101, 0111, 1111; 01010, 01011, 01111. - _Michael Somos_, Jun 02 2019
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 499.
  • T. Helleseth and A. Kholosha, Bent functions and their connections to combinatorics, in Surveys in Combinatorics 2013, edited by Simon R. Blackburn, Stefanie Gerke, Mark Wildon, Camb. Univ. Press, 2013.

Crossrefs

Column k=0 of A320341.

Programs

  • Maple
    A000358 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + phi(n/d)*(fibonacci(d+1)+fibonacci(d-1)) od; RETURN(sum/n); end;
    with(combstruct); spec := {A=Union(zero,Cycle(one),Cycle(Prod(zero,Sequence(one,card>0)))),one=Atom,zero=Atom}; seq(count([A,spec,unlabeled],size=i),i=1..30);
  • Mathematica
    nn=48;Drop[Map[Total,Transpose[Map[PadRight[#,nn]&,Table[ CoefficientList[ Series[CycleIndex[CyclicGroup[n],s]/.Table[s[i]->x^i+x^(2i),{i,1,n}],{x,0,nn}],x],{n,0,nn}]]]],1] (* Geoffrey Critzer, Feb 01 2014 *)
    max = 50; B[x_] := x*(1+x); A = Sum[EulerPhi[k]/k*Log[1/(1-B[x^k])], {k, 1, max}]/x + O[x]^max; CoefficientList[A, x] (* Jean-François Alcover, Feb 08 2016, after Joerg Arndt *)
    Table[1/n * Sum[EulerPhi[n/d] Total@ Map[Fibonacci, d + # & /@ {-1, 1}], {d, Divisors@ n}], {n, 47}] (* Michael De Vlieger, Dec 28 2016 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[n, EulerPhi[n/#] LucasL[#] &]/n]; (* Michael Somos, Jun 02 2019 *)
  • PARI
    N=66;  x='x+O('x^N);
    B(x)=x*(1+x);
    A=sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k))));
    Vec(A)
    /* Joerg Arndt, Aug 06 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, eulerphi(n/d) * (fibonacci(d+1) + fibonacci(d-1)))/n)}; /* Michael Somos, Jun 02 2019 */
    
  • Python
    from sympy import totient, lucas, divisors
    def A000358(n): return (n&1^1)+sum(totient(n//k)*(lucas(k)-((k&1^1)<<1)) for k in divisors(n,generator=True))//n # Chai Wah Wu, Sep 23 2023

Formula

a(n) = (1/n) * Sum_{ d divides n } totient(n/d) [ Fib(d-1)+Fib(d+1) ].
G.f.: Sum_{k>=1} phi(k)/k * log( 1/(1-B(x^k)) ) where B(x)=x*(1+x). - Joerg Arndt, Aug 06 2012
a(n) ~ ((1+sqrt(5))/2)^n / n. - Vaclav Kotesovec, Sep 12 2014
a(n) = Sum_{0 <= i <= ceiling((n-1)/2)} [ (1/(n - i)) * Sum_{d|gcd(i, n-i)} phi(d) * binomial((n - i)/d, i/d) ]. (This is DeFord's formula for the number of distinct Lucas tilings of a 1 X n bracelet up to symmetry, even though in the paper he refers to sequence A032192(n) = a(n) - 1.) - Petros Hadjicostas, Jun 07 2019