cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000409 Singular n X n (0,1)-matrices: the number of n X n (0,1)-matrices having distinct, nonzero ordered rows, but having at least two equal columns or at least one zero column.

Original entry on oeis.org

0, 6, 350, 43260, 14591171, 14657461469, 46173502811223, 474928141312623525, 16489412944755088235117, 1985178211854071817861662307, 846428472480689964807653763864449, 1299141117072945982773752362381072143359, 7268140170419155675761326840423792818571154945, 149650282980396792665043455999899697765782372693740287
Offset: 2

Views

Author

Keywords

Comments

This is a lower bound for the set of all n X n (0,1)-matrices having distinct, nonzero ordered rows and determinant 0 (compare A000410).
Here ordered means that we take only one representative from the n! matrices obtained by all permutations of the distinct rows of an n X n matrix.
a(n) is also the number of sets of n distinct nonzero (0,1)-vectors in R^n that do not span R^n.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [ -(&+[StirlingFirst(n+1,k+1)*Binomial(2^k-1,n): k in [0..n-1]]): n in [2..15]]; // G. C. Greubel, Jun 05 2020
    
  • Maple
    with(combinat): T := proc(n) -sum(stirling1(n+1,k+1)*binomial(2^k-1,n),k=0..n-1); end proc:
  • Mathematica
    a[n_] := -Sum[ StirlingS1[n+1, k+1]*Binomial[2^k-1, n], {k, 0, n-1}]; Table[a[n], {n, 2, 15}] (* Jean-François Alcover, Nov 21 2012, from formula *)
  • PARI
    a(n) = -sum(k=0, n-1, stirling(n+1, k+1, 1)*binomial(2^k-1, n)); \\ Michel Marcus, Jun 05 2020
    
  • Sage
    [sum((-1)^(n+k+1)*stirling_number1(n+1,k+1)*binomial(2^k-1,n) for k in (0..n-1)) for n in (2..15)] # G. C. Greubel, Jun 05 2020

Formula

a(n) = (-1)*Sum_{k=0..n-1} Stirling1(n+1, k+1)*binomial(2^k-1, n).
a(n) = binomial(2^n-1, n) - A094000(n). - Vladeta Jovovic, Nov 27 2005

Extensions

Edited by W. Edwin Clark, Nov 02 2003