A000419 Numbers that are the sum of 3 but no fewer nonzero squares.
3, 6, 11, 12, 14, 19, 21, 22, 24, 27, 30, 33, 35, 38, 42, 43, 44, 46, 48, 51, 54, 56, 57, 59, 62, 66, 67, 69, 70, 75, 76, 77, 78, 83, 84, 86, 88, 91, 93, 94, 96, 99, 102, 105, 107, 108, 110, 114, 115, 118, 120, 123, 126, 129, 131, 132, 133, 134, 138, 139, 140, 141, 142
Offset: 1
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 311.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Square Number.
- Index entries for sequences related to sums of squares
Programs
-
Haskell
a000419 n = a000419_list !! (n-1) a000419_list = filter ((== 3) . a002828) [1..] -- Reinhard Zumkeller, Feb 26 2015
-
Mathematica
Select[Range[150],SquaresR[3,#]>0&&SquaresR[2,#]==0&] (* Harvey P. Dale, Nov 01 2011 *)
-
PARI
is(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return( n/4^valuation(n,4)%8 !=7 ))); 0 \\ Charles R Greathouse IV, Feb 07 2017
-
Python
def aupto(lim): squares = [k*k for k in range(1, int(lim**.5)+2) if k*k <= lim] sum2sqs = set(a+b for i, a in enumerate(squares) for b in squares[i:]) sum3sqs = set(a+b for a in sum2sqs for b in squares) return sorted(set(range(lim+1)) & (sum3sqs - sum2sqs - set(squares))) print(aupto(142)) # Michael S. Branicky, Mar 06 2021
Formula
Legendre: a nonnegative integer is a sum of three (or fewer) squares iff it is not of the form 4^k m with m == 7 (mod 8).
Extensions
More terms from Arlin Anderson (starship1(AT)gmail.com)
Comments