cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000477 a(n) = Sum_{k=1..n-1} k^2*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 15, 76, 275, 720, 1666, 3440, 6129, 11250, 17545, 28896, 41405, 65072, 85950, 128960, 162996, 238545, 286995, 404600, 482160, 662112, 756470, 1042560, 1150625, 1549730, 1732590, 2257920, 2443105, 3250800, 3421160, 4452096, 4791600, 6039522, 6296500
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x^2 + 15*x^3 + 76*x^4 + 275*x^5 + 720*x^6 + 1666*x^7 + 3440*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.

Crossrefs

Cf. A000203 (sigma_1), A001158 (sigma_3).

Programs

  • Maple
    with(numtheory): S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(2); # N. J. A. Sloane, Jul 03 2015
  • Mathematica
    a[n_] := Sum[k^2 DivisorSigma[1, k] DivisorSigma[1, n-k], {k, 1, n-1}]; Array[a, 35] (* Jean-François Alcover, Feb 08 2016 *)
  • PARI
    a(n) = sum(k=1, n-1, k^2*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
    
  • PARI
    a(n) = my(f = factor(n)); ((n^2 - 4*n^3) * sigma(f) + 3*n^2 * sigma(f, 3)) / 24; \\ Amiram Eldar, Jan 04 2025

Formula

a(n) = Sum_{k=1..n-1} k^2*sigma(k)*sigma(n-k). - Sean A. Irvine, Nov 14 2010
G.f.: x*f(x)*g'(x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k) and g(x) = Sum_{k>=1} k^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, May 02 2018
a(n) = (n^2/24 - n^3/6)*sigma_1(n) + (n^2/8)*sigma_3(n). - Ridouane Oudra, Sep 15 2020
Sum_{k=1..n} a(k) ~ Pi^4 * n^6 / 4320. - Vaclav Kotesovec, May 09 2022

Extensions

More terms from Sean A. Irvine, Nov 14 2010
a(1)=0 prepended by Michel Marcus, Feb 02 2014