cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000524 Number of rooted trees with n nodes, 2 of which are labeled.

Original entry on oeis.org

2, 9, 34, 119, 401, 1316, 4247, 13532, 42712, 133816, 416770, 1291731, 3987444, 12266845, 37627230, 115125955, 351467506, 1070908135, 3257389088, 9892759091, 30002923380, 90879555521, 274963755791, 831064788976
Offset: 2

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A008295.

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-1)^2*(2-B(n-1))/(1-B(n-1))^3, x=0, n+1), x,n): seq(a(n), n=2..25); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1 - j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := Coefficient[Series[B[n-1]^2*((2 - B[n-1])/ (1 - B[n-1])^3), {x, 0, n+1}], x, n]; Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Dec 20 2012, translated from Alois P. Heinz's Maple program *)

Formula

G.f.: A(x) = B(x)^3+2*B(x)^2 where B(x) is g.f. of A000107.
G.f.: A(x) = B(x)^2*(2-B(x))/(1-B(x))^3, where B(x) is g.f. for rooted trees with n nodes, cf. A000081. - Vladeta Jovovic, Oct 19 2001

Extensions

More terms, new description and formula from Christian G. Bower, Nov 15 1999