cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A008295 Triangle read by rows: T(n,k) is the number of partially labeled rooted trees with n vertices, k of which are labeled, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 5, 9, 9, 4, 13, 34, 64, 64, 9, 35, 119, 326, 625, 625, 20, 95, 401, 1433, 4016, 7776, 7776, 48, 262, 1316, 5799, 21256, 60387, 117649, 117649, 115, 727, 4247, 22224, 100407, 373895, 1071904, 2097152, 2097152
Offset: 0

Views

Author

Keywords

Comments

T(n, k) where n counts the vertices and 0 <= k <= n counts the labels. - Sean A. Irvine, Mar 22 2018

Examples

			Triangle begins with T(0,0):
n\k 0  1   2    3    4    5    6
0   1
1   1  1
2   1  2   2
3   2  5   9    9
4   4 13  34   64   64
5   9 35 119  326  625  625
6  20 95 401 1433 4016 7776 7776
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134.

Crossrefs

Main diagonal is A000169.
Cf. A034799.

Programs

  • Mathematica
    m = 9; r[_] = 0;
    Do[r[x_] = x Exp[Sum[r[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, m}];
    r[x_, y_] = -ProductLog[(-E^(-r[x])) r[x] - (r[x] y)/E^r[x]];
    (CoefficientList[#, y] Range[0, Exponent[#, y]]!)& /@ CoefficientList[r[x, y] + O[x]^m, x] /. {} -> {1} // Flatten // Quiet (* Jean-François Alcover, Oct 23 2019 *)

Formula

E.g.f.: r(x,y) = T(n,k) * y^k * x^n / k! satisfies r(x,y) * exp(r(x)) = (1+y) * r(x) * exp(r(x,y)) where r(x) is the o.g.f. for A000081. - Sean A. Irvine, Mar 22 2018

Extensions

More terms from Sean A. Irvine, Mar 22 2018
Name edited by Andrew Howroyd, Mar 23 2023

A000269 Number of trees with n nodes, 3 of which are labeled.

Original entry on oeis.org

3, 16, 67, 251, 888, 3023, 10038, 32722, 105228, 334836, 1056611, 3311784, 10322791, 32026810, 98974177, 304835956, 936147219, 2867586542, 8764280567, 26733395986, 81399821915, 247459136331, 751211286356, 2277496842016
Offset: 3

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A034799.

Programs

  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1 - j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[ b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[ B[n-1]^3 * (2*B[n-1]-3) / (B[n-1]-1)^3, {x, 0, n}]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Jan 27 2015 *)

Formula

G.f.: A(x) = B(x)^3*(3-2*B(x))/(1-B(x))^3, where B(x) is g.f. for rooted trees with n nodes, cf. A000081. - Vladeta Jovovic, Oct 19 2001
a(n) = A000524(n) - 2*A000243(n).

Extensions

More terms, new description and formula from Christian G. Bower, Nov 15 1999
Showing 1-2 of 2 results.