A000568 Number of outcomes of unlabeled n-team round-robin tournaments.
1, 1, 1, 2, 4, 12, 56, 456, 6880, 191536, 9733056, 903753248, 154108311168, 48542114686912, 28401423719122304, 31021002160355166848, 63530415842308265100288, 244912778438520759443245824, 1783398846284777975419600287232, 24605641171260376770598003978281472
Offset: 0
References
- R. L. Davis, Structure of dominance relations, Bull. Math. Biophys., 16 (1954), 131-140.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 157 and 523.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 126 and 245.
- J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 87.
- K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Keith Briggs, Table of n, a(n) for n = 0..76
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Cropper, Sebrina Ruth, Ranking Score Vectors of Tournaments (2011). All Graduate Reports and Creative Projects. Paper 91. Utah State University, School of Graduate Studies.
- R. L. Davis, Structure of dominance relations, Bull. Math. Biophys., 16 (1954), 131-140. [Annotated scanned copy]
- D. S. Dummit, E. P. Dummit, and H. Kisilevsky, Characterizations of quadratic, cubic, and quartic residue matrices, arXiv preprint arXiv:1512.06480 [math.NT], 2015.
- Robert A. Laird and Brandon S. Schamp, Calculating Competitive Intransitivity: Computational Challenges, The American Naturalist (2018), Vol. 191, No. 4, 547-552.
- Robert A. Laird and Brandon S. Schamp, Exploring the performance of intransitivity indices in predicting coexistence in multispecies systems, Journal of Ecology (2018) Vol. 106, Issue 3, 815-825.
- Brendan McKay, Combinatorial Data.
- John W. Moon, Topics on tournaments, Holt, Rinehard and Winston (1968), see page 115.
- J. W. Moon and M. Goldberg, On the composition of two tournaments, Duke Mathematical Journal, vol.37, no.2 (1970), pp.323-332. (subscription required)
- J. W. Moon and M. Goldberg, On the composition of two tournaments, Duke Mathematical Journal 37.2 (1970): 323-332. [Annotated scans of pages 331 and 332 only]
- Vladimír Müller, Jaroslav Nešetřil, and Jan Pelant, Either tournaments or algebras?, Discrete Math. 11 (1975), 37-66. [Annotated copy] See table 1 on page 65.
- Gordon F. Royle, Cheryl E. Praeger, S. P. Glasby, Saul D. Freedman, and Alice Devillers, Tournaments and even graphs are equinumerous, Journal of Algebraic Combinatorics 57 (2023), 515-524; arXiv version, arXiv:2204.01947 [math.CO], 2022.
- N. J. A. Sloane, Annotated scan of John Moon's tables of tournaments on up to 6 nodes
- N. J. A. Sloane, Illustration of first 5 terms
- N. J. A. Sloane, A second Maple program for A000568
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 11 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Weisstein's World of Mathematics, Tournament
- Raphael Yuster, On tournament inversion, arXiv:2312.01910 [math.CO], 2023.
- Tianwei Zhang and Stefan Szeider, Searching for Smallest Universal Graphs and Tournaments with SAT, 29th Int'l Conf. Princ. Prac. Constraint Programming (CP 2023) Art. No. 39, 39:1-39:20.
- Index entries for sequences related to tournaments
Programs
-
Maple
with(combinat):with(numtheory): for n from 1 to 30 do p:=partition(n): s:=0:for k from 1 to nops(p) do ex:=1:for i from 1 to nops(p[k]) do if p[k][i] mod 2=0 then ex:=0:break:fi:od: if ex=1 then q:=convert(p[k],multiset): for i from 1 to n do a(i):=0:od:for i from 1 to nops(q) do a(q[i][1]):=q[i][2]:od: c:=1:ord:=1:for i from 1 to n do c:=c*a(i)!*i^a(i): if a(i)<>0 then ord:=lcm(ord,i):fi:od: g:=0:for d from 1 to ord do if ord mod d=0 then g1:=0:for del from 1 to n do if d mod del=0 then g1:=g1+del*a(del):fi:od:g:=g+phi(ord/d)*g1*(g1-1):fi:od: s:=s+2^(g/ord/2)/c:fi: od: print(n,s); od: # Vladeta Jovovic
-
Mathematica
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}]; oddp[v_] := (For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1); a[n_] := a[n] = (s = 0; Do[If[oddp[p] == 1, s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; s/n!); Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 13 2017, after Andrew Howroyd *)
-
PARI
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)} oddp(v) = {for(i=1, #v, if(bitand(v[i],1)==0, return(0)));1} a(n) = {my(s=0); forpart(p=n, if(oddp(p), s+=permcount(p)*2^edges(p))); s/n!} \\ Andrew Howroyd, Oct 22 2017
-
Python
from itertools import product from math import prod, factorial, gcd from fractions import Fraction from sympy.utilities.iterables import partitions def A000568(n): return int(sum(Fraction(1<<(sum(p[r]*p[s]*gcd(r,s) for r,s in product(p.keys(),repeat=2))-sum(p.values())>>1),prod(q**p[q]*factorial(p[q]) for q in p)) for p in partitions(n) if all(q&1 for q in p))) # Chai Wah Wu, Jul 01 2024
Formula
Davis's formula: a(n) = Sum_{j} (1/(Product (k^(j_k) (j_k)!))) * 2^{t_j},
where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc.,
and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s gcd(r,s) - Sum_{r} j_r ].
Extensions
More terms from Vladeta Jovovic
Comments