cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000617 Number of NP-equivalence classes of threshold functions of n or fewer variables.

Original entry on oeis.org

2, 3, 5, 10, 27, 119, 1113, 29375, 2730166, 989913346
Offset: 0

Views

Author

Keywords

Comments

From Fabián Riquelme, Jun 01 2012: (Start)
NP-equivalence classes of threshold functions are equivalent to weighted games, in simple game theory.
The number for n=9 was first documented in Tautenhahn's thesis. (End)

References

  • S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 14.
  • S. Muroga, T. Tsuboi, and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Tautenhahn, Enumeration einfacher Spiele mit Anwendungen in der Stimmgewichtsverteilung, 2008. Master's thesis, University of Bayreuth, 269 pages (in German).

Crossrefs

Cf. A000619.

Formula

a(n) = Sum_{k=0..n} A000619(k). - Alastair D. King, Oct 26 2023.

A003184 Number of NP-equivalence classes of self-dual threshold functions of exactly n variables.

Original entry on oeis.org

1, 0, 1, 1, 4, 14, 114, 2335, 172958, 52805196
Offset: 1

Views

Author

Keywords

References

  • H. M. Gurk and J. R. Isbell. 1959. Simple Solutions. In A. W. Tucker and R. D. Luce (eds.) Contributions to the Theory of Games, Volume 4. Princeton, NJ: Princeton University Press, pp. 247-265. Case n=6.
  • S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 24. (Cases n>7.)
  • J. von Neumann and O. Morgenstern, Theory of games and economic behavior, Princeton University Press, New Jersey, 1944. Cases n=1 to 5.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A001532(n) - A001532(n-1), for n > 1. - Evgeny Luttsev, Sep 09 2014

Extensions

a(9) from Evgeny Luttsev, Sep 09 2014
Better description and new offset from Alastair King, Mar 17 2023

A176692 Partial sums of A000617.

Original entry on oeis.org

2, 5, 10, 20, 47, 166, 1279, 30654, 2760820
Offset: 0

Views

Author

Jonathan Vos Post, Apr 24 2010

Keywords

Comments

Partial sums of number of NP-equivalence classes of threshold functions of n or fewer variables. The subsequence of primes in this sequence begins: 2, 5, 47, 1279.

Examples

			a(6) = 2 + 3 + 5 + 10 + 27 + 119 + 1113 = 1279 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A000617(i) = SUM[i=0..n] SUM[j=0..i] A000619(j).
Showing 1-3 of 3 results.