A000681 Number of n X n matrices with nonnegative entries and every row and column sum 2.
1, 1, 3, 21, 282, 6210, 202410, 9135630, 545007960, 41514583320, 3930730108200, 452785322266200, 62347376347779600, 10112899541133589200, 1908371363842760216400, 414517594539154672566000, 102681435747106627787376000, 28772944645196614863048048000
Offset: 0
Examples
G.f. = 1 + x + 3*x^2 + 21*x^3 + 282*x^4 + 6210*x^5 + 202410*x^6 + 9135630*x^7 + ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 125, #25, a_n.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, section 3.5.10.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Cor. 5.5.11 (a).
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.
- C. B. Tompkins, Methods of successive restrictions in computational problems involving discrete variables. 1963, Proc. Sympos. Appl. Math., Vol. XV pp. 95-106; Amer. Math. Soc., Providence, R.I.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250 (first 49 terms from R. W. Robinson)
- H. Anand, V. C. Dumir and H. Gupta, A combinatorial distribution problem, Duke Math. J., 33 (1996), 757-769.
- Esther M. Banaian, Generalized Eulerian Numbers and Multiplex Juggling Sequences, (2016). All College Thesis Program. Paper 24.
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- S. Cockburn and J. Lesperance, Deranged socks, Mathematics Magazine, 86 (2013), 97-109.
- Ira Gessel, Enumerative applications of symmetric functions, Séminaire Lotharingien de Combinatoire, B17a (1987), 17 pp.
- William George Griffiths, On Integer Solutions to Linear Equations, Annals of Combinatorics 12:1 (2008), pp. 53-70.
- Rui-Li Liu, Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019.
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Index entries for sequences related to magic squares
Crossrefs
Programs
-
Maple
A000681 := proc(n) coeftayl( exp(x/2)/sqrt(1-x),x=0,n) ; %*(n!)^2 ; end proc: seq(A000681(n),n=0..10) ; # R. J. Mathar, May 01 2019
-
Mathematica
a[n_] := Sum[ ((2*i)!*n!^2) / (2^i*(i!^2*(n - i)!)), {i, 0, n}]/2^n; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 08 2011 *) a[n_] := n!*HypergeometricPFQ[{1/2, -n}, {}, -2]/2^n; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 08 2012 *)
-
PARI
Vec( serlaplace(serlaplace( exp(x/2)/sqrt(1-x) )) ) /* Max Alekseyev, Apr 28 2014 */
-
Sage
from sage.combinat.integer_matrices import IntegerMatrices def a(n): return IntegerMatrices([2]*n, [2]*n).cardinality() # Ralf Stephan, Mar 02 2014
Formula
Sum_{n >= 0} a(n) x^n / n!^2 = exp(x/2) / sqrt(1-x).
D-finite with recurrence a(n) = n^2*a(n-1) - (1/2)*n*(n-1)^2*a(n-2).
a(n) is asymptotic to c/sqrt(n)*(n!)^2 where c=0.93019... - Benoit Cloitre, Jun 25 2004
a(n) = sum(i=0..n, 2^(i-2*n) * C(n, i)^2 * (2*n-2*i)! * i! ).
a(n) = 2^(-n) * sum(i=0..n, ((n!)^2*(2*i)!) / ((i!)^2*((n-i)!*2^i)) ). - Shanzhen Gao, Nov 05 2007
In Cloitre's formula is c = exp(1/2)/sqrt(Pi) = 0.9301913671026328586. - Vaclav Kotesovec, Aug 12 2013
With c as used above by Cloitre and Kotesovec, a(n) is asymptotic to c/sqrt(n)*(n!)^2 * (1 + 2/(16*n) + 50/(16*n)^2 + 1100/(16*n)^3 + 32438/(16*n)^4 + 1185660/(16*n)^5 + 50498228/(16*n)^6 + 2438464600/(16*n)^7 + 131323987366/(16*n)^8 + 7782036656108/(16*n)^9 + 501905392385436/(16*n)^10 + ...). - Jon E. Schoenfield, Mar 03 2014
E.g.f.: 2/((2-x)*W(0)), where W(k) = 1 - (2*k+1)*x/(2-x-2*(k+1)*x/W(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2014
Extensions
More terms from David W. Wilson
Comments