cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000716 Number of partitions of n into parts of 3 kinds.

Original entry on oeis.org

1, 3, 9, 22, 51, 108, 221, 429, 810, 1479, 2640, 4599, 7868, 13209, 21843, 35581, 57222, 90882, 142769, 221910, 341649, 521196, 788460, 1183221, 1762462, 2606604, 3829437, 5590110, 8111346, 11701998, 16790136, 23964594, 34034391, 48104069, 67679109, 94800537, 132230021, 183686994, 254170332
Offset: 0

Views

Author

Keywords

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
  • Moreno, Carlos J., Partitions, congruences and Kac-Moody Lie algebras. Preprint, 37pp., no date. See Table I.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000712.
Column 3 of A144064.

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*3, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, May 20 2013
  • Mathematica
    a[0] = 1; a[n_] := a[n] = 1/n*Sum[3*a[k]*DivisorSigma[1, n-k], {k, 0, n-1}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 03 2014, after Joerg Arndt *)
    (1/QPochhammer[q]^3 + O[q]^40)[[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
  • PARI
    Vec(1/eta('x+O('x^66))^3) \\ Joerg Arndt, Apr 28 2013
    
  • Python
    from functools import lru_cache
    from sympy import divisor_sigma
    @lru_cache(maxsize=None)
    def A000716(n): return sum(A000716(k)*divisor_sigma(n-k) for k in range(n))*3//n if n else 1 # Chai Wah Wu, Sep 25 2023

Formula

G.f.: Product_{m>=1} 1/(1-x^m)^3.
EULER transform of 3, 3, 3, 3, 3, 3, 3, 3, ...
a(0)=1, a(n) = 1/n*Sum_{k=0..n-1} 3*a(k)*sigma_1(n-k). - Joerg Arndt, Feb 05 2011
a(n) ~ exp(Pi * sqrt(2*n)) / (8 * sqrt(2) * n^(3/2)) * (1 - (3/Pi + Pi/8) / sqrt(2*n)). - Vaclav Kotesovec, Feb 28 2015, extended Jan 16 2017
G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

Extensions

Extended with formula from Christian G. Bower, Apr 15 1998