cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000718 Boustrophedon transform of triangular numbers 1,1,3,6,10,...

Original entry on oeis.org

1, 2, 6, 20, 65, 226, 883, 3947, 20089, 115036, 732171, 5126901, 39165917, 324138010, 2888934623, 27587288507, 281001801969, 3041152133848, 34849036364659, 421526126267265, 5367037330561365, 71752003756908550
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a000718 n = sum $ zipWith (*) (a109449_row n) (1 : tail a000217_list)
    -- Reinhard Zumkeller, Nov 04 2013
    
  • Mathematica
    t[n_, 0] := If[n == 0, 1, n*(n+1)/2]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    def A000718_gen(): # generator of terms
        yield 1
        blist, c = (1,), 1
        for i in count(2):
            yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1]
            c += i
    A000718_list = list(islice(A000718_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

E.g.f.: (sec(x) + tan(x))*(exp(x)*(x + 1/2*x^2) + 1). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * (8 + exp(Pi/2)*Pi*(4+Pi)) * 2^(n-1) / Pi^(n+1). - Vaclav Kotesovec, Jun 12 2015