A000718 Boustrophedon transform of triangular numbers 1,1,3,6,10,...
1, 2, 6, 20, 65, 226, 883, 3947, 20089, 115036, 732171, 5126901, 39165917, 324138010, 2888934623, 27587288507, 281001801969, 3041152133848, 34849036364659, 421526126267265, 5367037330561365, 71752003756908550
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a000718 n = sum $ zipWith (*) (a109449_row n) (1 : tail a000217_list) -- Reinhard Zumkeller, Nov 04 2013
-
Mathematica
t[n_, 0] := If[n == 0, 1, n*(n+1)/2]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
Python
from itertools import accumulate, count, islice def A000718_gen(): # generator of terms yield 1 blist, c = (1,), 1 for i in count(2): yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1] c += i A000718_list = list(islice(A000718_gen(),30)) # Chai Wah Wu, Jun 11 2022
Formula
E.g.f.: (sec(x) + tan(x))*(exp(x)*(x + 1/2*x^2) + 1). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * (8 + exp(Pi/2)*Pi*(4+Pi)) * 2^(n-1) / Pi^(n+1). - Vaclav Kotesovec, Jun 12 2015