cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000732 Boustrophedon transform of 1 & primes: 1,2,3,5,7,...

Original entry on oeis.org

1, 3, 8, 22, 66, 222, 862, 3838, 19542, 111894, 712282, 4987672, 38102844, 315339898, 2810523166, 26838510154, 273374835624, 2958608945772, 33903161435148, 410085034127000, 5221364826476796, 69804505809732988
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a000732 n = sum $ zipWith (*) (a109449_row n) a008578_list
    
  • Mathematica
    t[n_, 0] := If[n==0, 1, Prime[n]]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    from sympy import prime
    def A000732_gen(): # generator of terms
        yield 1
        blist = (1,)
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=prime(i))))[-1]
    A000732_list = list(islice(A000732_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A008578(k+1). - Reinhard Zumkeller, Nov 04 2013
E.g.f.: (sec(x) + tan(x))*(1 + Sum_{k>=1} prime(k)*x^k/k!). - Ilya Gutkovskiy, Apr 23 2019