A000734 Boustrophedon transform of 1,1,2,4,8,16,32,...
1, 2, 5, 15, 49, 177, 715, 3255, 16689, 95777, 609875, 4270695, 32624329, 269995377, 2406363835, 22979029335, 234062319969, 2533147494977, 29027730898595, 351112918079175, 4470508510495609, 59766296291090577
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a000734 n = sum $ zipWith (*) (a109449_row n) (1 : a000079_list) -- Reinhard Zumkeller, Nov 04 2013
-
Mathematica
CoefficientList[Series[(1+E^(2*x))*(Sec[x]+Tan[x])/2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *) t[n_, 0] := If[n == 0, 1, 2^(n-1)]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n - 1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
Python
from itertools import count, accumulate, islice def A000734_gen(): # generator of terms yield 1 blist, m = (1,), 1 while True: yield (blist := tuple(accumulate(reversed(blist),initial=m)))[-1] m *= 2 A000734_list = list(islice(A000734_gen(),40)) # Chai Wah Wu, Jun 12 2022
-
Sage
# Algorithm of L. Seidel (1877) def A000734_list(n) : A = {-1:0, 0:1}; R = [] k = 0; e = 1; Bm = 1 for i in range(n) : Am = Bm A[k + e] = 0 e = -e for j in (0..i) : Am += A[k] A[k] = Am k += e Bm += Bm R.append(A[e*i//2]/2) return R A000734_list(22) # Peter Luschny, Jun 02 2012
Formula
E.g.f.: (1 + exp(2*x))*(sec(x) + tan(x))/2. - Paul Barry, Jan 21 2005
a(n) ~ n! * (1 + exp(Pi)) * (2/Pi)^(n+1). - Vaclav Kotesovec, Oct 07 2013
Comments