A000736 Boustrophedon transform of Catalan numbers 1, 1, 1, 2, 5, 14, ...
1, 2, 4, 10, 32, 120, 513, 2455, 13040, 76440, 492231, 3465163, 26530503, 219754535, 1959181266, 18710532565, 190588702776, 2062664376064, 23636408157551, 285900639990875, 3640199365715769, 48665876423760247
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a000736 n = sum $ zipWith (*) (a109449_row n) (1 : a000108_list) -- Reinhard Zumkeller, Nov 05 2013
-
Maple
egf := (sec(x/2)+tan(x/2))*(exp(x)*((x-1/2)*BesselI(0,x)-x*BesselI(1,x))+3/2); s := n -> 2^n*n!*coeff(series(egf,x,n+2),x,n); seq(s(n), n=0..22); # Peter Luschny, Oct 30 2014, after Sergei N. Gladkovskii
-
Mathematica
CoefficientList[Series[1/2*(3 + E^(2*x)*((4*x-1)*BesselI[0, 2*x] - 4*x*BesselI[1, 2*x]))*(Sec[x] + Tan[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 30 2014, after Peter Luschny *) t[n_, 0] := If[n == 0, 1, CatalanNumber[n - 1]]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
Python
from itertools import accumulate, count, islice def A000736_gen(): # generator of terms yield 1 blist, c = (1,), 1 for i in count(0): yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1] c = c*(4*i+2)//(i+2) A000736_list = list(islice(A000736_gen(),40)) # Chai Wah Wu, Jun 12 2022
Formula
E.g.f.: (sec(x) + tan(x))*(integral(exp(2*x)*(BesselI(0,2*x)-BesselI(1,2*x)),x)+1). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * (6/Pi+2*exp(Pi)*((2-1/Pi)*BesselI(0,Pi)-2*BesselI(1,Pi))) * 2^n / Pi^n. - Vaclav Kotesovec, Oct 30 2014