cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000773 Number of numbers == 0 (mod 3) in range 2^n to 2^(n+1) with odd number of 1's in binary expansion.

Original entry on oeis.org

0, 0, 0, 1, 1, 6, 8, 29, 45, 130, 220, 561, 1001, 2366, 4368, 9829, 18565, 40410, 77540, 164921, 320001, 669526, 1309528, 2707629, 5326685, 10919090, 21572460, 43942081, 87087001, 176565486, 350739488, 708653429, 1410132405, 2841788170, 5662052980
Offset: 1

Views

Author

Keywords

Comments

The first numbers with this property are 21, 42, 69, 81, 84, 87, 93, and 117. - T. D. Noe, Jun 20 2012

Examples

			G.f. = x^4 + x^5 + 6*x^6 + 8*x^7 + 29*x^8 + 45*x^9 + 130*x^10 + 220*x^11 + ...
		

Crossrefs

Cf. A000069.

Programs

  • Mathematica
    nn = 35; CoefficientList[Series[x^3/((1 + x) (1 - 2 x) (1 - 3 x^2)), {x, 0, nn}], x] (* T. D. Noe, Jun 20 2012 *)

Formula

a(n) = (1/6)*(2^n - (-1)^n - 3^((n+1)/2)). G.f.: x^3 / ((1+x)*(1-2*x)*(1-3*x^2)). - Ralf Stephan, Aug 08 2004
a(n) = a(n-1) + 2 * a(n-2) + 3^(n/2) * (1 + (-1)^n) / 18 for all n in Z. - Michael Somos, Jan 23 2014
a(n) = - 6 * a(n-4) - 3 * a(n-3) + 5 * a(n-2) + a(n-1) for n > 4. - Hugo Pfoertner, Jun 13 2017