cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000800 Sum of upward diagonals of Eulerian triangle.

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 38, 125, 449, 1742, 7269, 32433, 153850, 772397, 4088773, 22746858, 132601933, 807880821, 5132235182, 33925263901, 232905588441, 1657807491222, 12215424018837, 93042845392105, 731622663432978, 5931915237693517, 49535826242154973
Offset: 0

Views

Author

Tony Harkin [ harkin(AT)mit.edu, tharkin(AT)vortex.weather.brockport.edu ]

Keywords

Examples

			1 = 1, 1 = 1, 1 = 1 + 0, 2 = 1 + 1, 5 = 1 + 4 + 0, etc.
G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 38*x^6 + 125*x^7 + 449*x^8 + 1742*x^9 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.

Crossrefs

Cf. A173018.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0 and n>=0, 1,
          `if`(k<0 or k>n, 0, (n-k)*b(n-1, k-1)+(k+1)*b(n-1, k)))
        end:
    a:= n-> add(b(n-k, k), k=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 23 2018
  • Mathematica
    t[n_ /; n >= 0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0; t[n_, k_] := t[n, k] = (n-k)*t[n-1, k-1] + (k+1)*t[n-1, k]; a[n_] := Sum[t[n-k, k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 14 2011, after Michael Somos *)
    Table[Sum[Sum[(-1)^j*(k-j+1)^(n-k)*Binomial[n-k+1, j], {j, 0, k}], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Aug 15 2015 *)
  • Maxima
    a(n):=sum(m!*sum((binomial(n-m-k,k)*stirling2(n-k,m)*(-1)^(-n+m)),k,0,(n-m)/2),m,0,n); /* Vladimir Kruchinin, Jan 23 2018 */

Formula

G.f.: 1/(1-x/(1-x^2/(1-2x/(1-2x^2/(1-3x/(1-3x^2/(1-... (continued fraction). - Paul Barry, Mar 24 2010
a(n) = Sum_{k} A173018(n-k, k). - Michael Somos, Mar 17 2011
G.f.: 1/Q(0), where Q(k) = 1 - x*(k+1)/(1 - x^2*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 14 2013
G.f.: 1/Q(0), where Q(k) = 1 - x - x*(x+1)*k - x^3*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 14 2013
a(n) = Sum_{m=0..n} (-1)^(n-m)*m!*Sum_{k=0..floor((n-m)/2)} C(n-m-k,k)*Stirling2(n-k,m). - Vladimir Kruchinin, Jan 23 2018

Extensions

More terms from David W. Wilson