cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000807 Quadratic invariants.

Original entry on oeis.org

1, 2, 14, 182, 3614, 99302, 3554894, 159175382, 8654995454, 558786468422, 42086200603694, 3645412584724022, 358877175474325214, 39758874175808713382, 4915216680878167372814, 673139563824188490513302, 101475126400695241802946494, 16744618803625299734467026182
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000110.

Programs

  • Maple
    Bell := combinat:-bell:
    A000807 := n -> add(binomial(2*n, k)*(-1)^k*Bell(k)*Bell(2*n-k), k = 0..2*n):
    seq(A000807(n), n=0..17); # Peter Luschny, Sep 10 2017
  • Mathematica
    nn = 40; t = Range[0, nn]! CoefficientList[Series[Exp[Exp[x] + Exp[-x] - 2], {x, 0, nn}], x]; Take[t, {1, nn, 2}] (* T. D. Noe, Jun 20 2012 *)
  • Python
    from sympy import binomial, bell
    def a(n): return sum(binomial(2*n, k)*(-1)**k*bell(k)*bell(2*n - k) for k in range(2*n  + 1))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Sep 11 2017

Formula

From Vladeta Jovovic, Sep 08 2002: (Start)
E.g.f.: exp(exp(x)+exp(-x)-2).
a(n) = Sum_{k=0..2*n} (-1)^k*binomial(2*n, k)*A000110(k)*A000110(2*n - k). (End)
a(0) = 1; a(n) = 2 * Sum_{k=1..n} binomial(2*n-1,2*k-1) * a(n-k). - Ilya Gutkovskiy, Jan 27 2020

Extensions

More terms from Vladeta Jovovic, Sep 08 2002