A000901 Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).
0, 0, 7, 74, 882, 11144, 159652, 2571960, 46406392, 928734944, 20436096048, 490489794464, 12752891909920, 357081983435904, 10712466529388608, 342798976818878336, 11655165558112403328, 419585962575107694080
Offset: 1
References
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
- E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 222.
- E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
- R. G. Wilson, v, Comments on the Larsen paper (no date)
Programs
-
Maple
For Maple program see A000903.
Formula
For asymptotics see the Robinson paper.
Extensions
Corrected and extended by Sean A. Irvine, Aug 23 2011