A000925 Number of ordered ways of writing n as a sum of 2 squares of nonnegative integers.
1, 2, 1, 0, 2, 2, 0, 0, 1, 2, 2, 0, 0, 2, 0, 0, 2, 2, 1, 0, 2, 0, 0, 0, 0, 4, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 4
Offset: 0
References
- A. Das and A. C. Melissinos, Quantum Mechanics: A Modern Introduction, Gordon and Breach, 1986, p. 47.
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985.
Links
Programs
-
Haskell
a000925 n = sum $ map (a010052 . (n -)) $ takeWhile (<= n) a000290_list -- Reinhard Zumkeller, Sep 14 2014
-
Mathematica
a[n_] := (pr = PowersRepresentations[n, 2, 2]; Count[Union[Join[pr, Reverse /@ pr]], {j_ /; j >= 0, k_ /; k >= 0}]); a /@ Range[0, 100] (* Jean-François Alcover, Apr 05 2011 *) nn = 100; t = CoefficientList[Series[Sum[x^k^2, {k, 0, Sqrt[nn]}]^2, {x, 0, nn}], x] (* T. D. Noe, Apr 05 2011 *) SquareQ[n_] := IntegerQ[Sqrt[n]]; Table[Count[FrobeniusSolve[{1, 1}, n], {?SquareQ}], {n, 0, 100}] (* Robert G. Wilson v, Apr 15 2017 *)
-
PARI
a(n)=sum(i=0,n,sum(j=0,n,if(i^2+j^2-n,0,1)))
Formula
Coefficient of q^k in (1/4)*(1 + theta_3(0, q))^2.