A000972 Fermat coefficients.
1, 12, 66, 245, 715, 1768, 3876, 7752, 14421, 25300, 42287, 67860, 105183, 158224, 231880, 332112, 466089, 642341, 870922, 1163580, 1533939, 1997688, 2572780, 3279640, 4141382, 5184036, 6436782, 7932196, 9706503, 11799840, 14256528, 17125353, 20459857
Offset: 7
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 7..1000
- R. P. Loh, A. G. Shannon, A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- P. A. Piza, Fermat coefficients, Math. Mag., 27 (1954), 141-146.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1,1,-6,15,-20,15,-6,1).
Crossrefs
Cf. A258708.
Programs
-
Haskell
a000972 n = a258708 n (n - 7) -- Reinhard Zumkeller, Jun 23 2015
-
Maple
a := n->floor((2*n)*(2*n+1)*(2*n+2)*(2*n+3)*(2*n+4)*(2*n+5)/7!);
-
Mathematica
Table[Floor[((2*n)*(2*n+1)*(2*n+2)*(2*n+3)*(2*n+4)*(2*n+5)/7!)],{n,1,30}] (* Vincenzo Librandi, Apr 10 2012 *) With[{c=7!,t=Times@@(2n+Range[0,5])},Table[Floor[t/c],{n,30}]] (* Harvey P. Dale, Apr 20 2014 *)
-
PARI
Vec(x^7*(1 + 6*x + 9*x^2 + 9*x^3 + 10*x^4 + 7*x^5 + 12*x^6 + 6*x^7 + 4*x^8) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^50)) \\ Colin Barker, Mar 28 2017
Formula
a(n) = A258708(n,n-7). - Reinhard Zumkeller, Jun 23 2015
G.f.: x^7*(1 + 6*x + 9*x^2 + 9*x^3 + 10*x^4 + 7*x^5 + 12*x^6 + 6*x^7 + 4*x^8) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, Mar 28 2017