A000983 Size of minimal binary covering code of length n and covering radius 1.
1, 2, 2, 4, 7, 12, 16, 32, 62
Offset: 1
References
- G. D. Cohen et al., Covering Codes, North-Holland, 1997, p. 166.
- I. S. Honkala and Patric R. J. Östergård, Code design, Chapter 13 of Local Search in Combinatorial Optimization, E. Aarts and J. K. Lenstra (editors), Wiley, New York 1997, pp. 441-456.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jernej Azarija, M. A. Henning, S. Klavzar, (Total) Domination in Prisms, arXiv preprint arXiv:1606.08143 [math.CO], 2016. See Table 1.
- R. Bertolo, Patric R. J. Östergård and W. D. Weakley, An updated table of binary/ternary mixed covering codes, J. Combin. Designs, 12 (2004), 157-176, DOI:10.1002/jcd.20008. [a(10)>=107]
- H. Hamalainen et al., Football pools - a game for mathematicians, Amer. Math. Monthly, 102 (1995), 579-588.
- J. G. Kalbfleisch and R. G. Stanton, A combinatorial problem in matching, J. London Math. Soc., 44 (1969), 60-64.
- Dmitry Kamenetsky, Best known solutions for n <= 11.
- A. Lobstein, G. Cohen and N. J. A. Sloane, Recouvrements d'Espaces de Hamming Binaires, C. R. Acad. Sci. Paris, Series I, 301 (1985), 135-138.
- Patric R. J. Östergård and Markku K. Kaikkonen, New upper bounds for binary covering codes, Discrete Mathematics 178 (1998), 165-179.
- Patric R. J. Östergård and U. Blass, On the size of optimal binary codes of length 9 and covering radius 1, IEEE Trans. Inform. Theory, 47 (2001), 2556-2557. [Determines a(9)].
- Eric Weisstein's World of Mathematics, Domination Number
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Wikipedia, Hat puzzle (Ebert's version and Hamming codes)
- Index entries for sequences related to covering codes
Comments