cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001001 Number of sublattices of index n in generic 3-dimensional lattice.

Original entry on oeis.org

1, 7, 13, 35, 31, 91, 57, 155, 130, 217, 133, 455, 183, 399, 403, 651, 307, 910, 381, 1085, 741, 931, 553, 2015, 806, 1281, 1210, 1995, 871, 2821, 993, 2667, 1729, 2149, 1767, 4550, 1407, 2667, 2379, 4805, 1723, 5187, 1893, 4655, 4030, 3871, 2257, 8463, 2850, 5642, 3991, 6405, 2863
Offset: 1

Views

Author

Keywords

Comments

These sublattices are in 1-1 correspondence with matrices
[a b d]
[0 c e]
[0 0 f]
with acf = n, b = 0..c-1, d = 0..f-1, e = 0..f-1. The sublattice is primitive if gcd(a,b,c,d,e,f) = 1.
Total area of all distinct rectangles whose side lengths are divisors of n, and whose length is an integer multiple of the width. - Wesley Ivan Hurt, Aug 23 2020

References

  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(d), pp. 76 and 113.

Crossrefs

Column 3 of A160870.
Cf. A060983, A064987 (Mobius transform).
Primes in this sequence are in A053183.

Programs

  • Haskell
    a001001 n = sum [sum [k * (if k `mod` l == 0 then l else 0) | k <- [1..n], n `mod` k == 0 ] | l <- [1..n]]
    a = [ a001001 n | n <- [1..53]]
    putStrLn $ concat $ map (++ ", ") (map show a) -- Miles Wilson, Apr 04 2025
  • Maple
    nmax := 100:
    L12 := [seq(1,i=1..nmax) ];
    L27 := [seq(i,i=1..nmax) ];
    L290 := [seq(i^2,i=1..nmax) ];
    DIRICHLET(L12,L27) ;
    DIRICHLET(%,L290) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    a[n_] := Sum[ d*DivisorSigma[1, d], {d, Divisors[n]}]; Table[ a[n], {n, 1, 42}] (* Jean-François Alcover, Jan 20 2012, after Vladeta Jovovic *)
    f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 2}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    N=17; default(seriesprecision,N); x=z+O(z^(N+1))
    c=sum(j=1,N,j*x^j);
    t=1/prod(j=1,N, eta(x^(j))^j)
    t=log(t)
    t=serconvol(t,c)
    Vec(t)
    /* Joerg Arndt, May 03 2008 */
    
  • PARI
    a(n)=sumdiv(n,d, d * sumdiv(d,t, t ) );  /* Joerg Arndt, Oct 07 2012 */
    
  • PARI
    a(n)=sumdivmult(n,d, sigma(d)*d) \\ Charles R Greathouse IV, Sep 09 2014
    

Formula

If n = Product p^m, a(n) = Product (p^(m + 1) - 1)(p^(m + 2) - 1)/(p - 1)(p^2 - 1). Or, a(n) = Sum_{d|n} sigma(n/d)*d^2, Dirichlet convolution of A000290 and A000203.
a(n) = Sum_{d|n} d*sigma(d). - Vladeta Jovovic, Apr 06 2001
Multiplicative with a(p^e) = ((p^(e+1)-1)(p^(e+2)-1))/((p-1)(p^2-1)). - David W. Wilson, Sep 01 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^sigma(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
a(n) = Sum_{d1|n, d2|n, d1|d2} d1*d2. - Wesley Ivan Hurt, Aug 23 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^2*zeta(3)/18 = 0.659101... . - Amiram Eldar, Oct 19 2022
G.f.: Sum_{k>=1} Sum {l>=1} k*l^2*x^(k*l - 1)/(1 - x^(k*l)). - Miles Wilson, Apr 04 2025