cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001004 Number of nonequivalent dissections of an (n+2)-gon by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 1, 2, 3, 9, 20, 75, 262, 1117, 4783, 21971, 102249, 489077, 2370142, 11654465, 57916324, 290693391, 1471341341, 7504177738, 38532692207, 199076194985, 1034236705992, 5400337050086, 28329240333758, 149244907249629
Offset: 0

Views

Author

Keywords

Comments

Original name: number of symmetric dissections of a polygon.
Also number of 2-connected outerplanar graphs on n unlabeled nodes. - Steven Finch, Dec 09 2004

References

  • Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See p. 155. - N. J. A. Sloane, Apr 18 2014
  • Guanzhang Hu, Group theory method for enumeration of outerplanar graphs, Acta Math. Appl. Sinica 14 (1998) 381-387.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[x_, n_]:=x+Sum[(1/r)*Binomial[s-2, r-1]*Binomial[r+s-1, s]*x^s, {r, 1, n}, {s, 2, n}]; F[x_, n_]:=Series[((3x^2-2*x*f[x, n]+f[x, n]^2)- (2+2*x+7*x^2-4*x*f[x, n]+2*f[x, n]^2)*f[x^2, n]+ 2*f[x^2, n]^2)/(4*(2*f[x^2, n]-1))+Sum[If[Mod[k, d]==0, EulerPhi[d]*f[x^d, n]^(k/d)/k, 0], {k, 3, n}, {d, 1, k}]/2, {x, 0, n}]; F[x, 22] (Finch)
  • PARI
    \\ See A295419 for DissectionsModDihedral().
    my(v=DissectionsModDihedral(apply(i->1, [1..30])));v[3..#v] \\ Andrew Howroyd, Nov 22 2017

Extensions

More terms from Esa Peuha (esa.peuha(AT)helsinki.fi), Oct 21 2005
Name clarified by Andrew Howroyd, Nov 22 2017