cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A002054 Binomial coefficient C(2n+1, n-1).

Original entry on oeis.org

1, 5, 21, 84, 330, 1287, 5005, 19448, 75582, 293930, 1144066, 4457400, 17383860, 67863915, 265182525, 1037158320, 4059928950, 15905368710, 62359143990, 244662670200, 960566918220, 3773655750150, 14833897694226, 58343356817424, 229591913401900
Offset: 1

Views

Author

Keywords

Comments

a(n) = number of permutations in S_{n+2} containing exactly one 312 pattern. E.g., S_3 has a_1 = 1 permutations containing exactly one 312 pattern, and S_4 has a_2 = 5 permutations containing exactly one 312 pattern, namely 1423, 2413, 3124, 3142, and 4231. This comment is also true if 312 is replaced by any of 132, 213, or 231 (but not 123 or 321, for which see A003517). [Comment revised by N. J. A. Sloane, Nov 26 2022]
Number of valleys in all Dyck paths of semilength n+1. Example: a(2)=5 because UD*UD*UD, UD*UUDD, UUDD*UD, UUD*UDD, UUUDDD, where U=(1,1), D=(1,-1) and the valleys are shown by *. - Emeric Deutsch, Dec 05 2003
Number of UU's (double rises) in all Dyck paths of semilength n+1. Example: a(2)=5 because UDUDUD, UDU*UDD, U*UDDUD, U*UDUDD, U*U*UDDD, the double rises being shown by *. - Emeric Deutsch, Dec 05 2003
Number of peaks at level higher than one (high peaks) in all Dyck paths of semilength n+1. Example: a(2)=5 because UDUDUD, UDUU*DD, UU*DDUD, UU*DU*DD, UUU*DDD, the high peaks being shown by *. - Emeric Deutsch, Dec 05 2003
Number of diagonal dissections of a convex (n+3)-gon into n regions. Number of standard tableaux of shape (n,n,1) (see Stanley reference). - Emeric Deutsch, May 20 2004
Number of dissections of a convex (n+3)-gon by noncrossing diagonals into several regions, exactly n-1 of which are triangular. Example: a(2)=5 because the convex pentagon ABCDE is dissected by any of the diagonals AC, BD, CE, DA, EB into regions containing exactly 1 triangle. - Emeric Deutsch, May 31 2004
Number of jumps in all full binary trees with n+1 internal nodes. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
a(n) is the total number of nonempty Dyck subpaths in all Dyck paths (A000108) of semilength n. For example, the Dyck path UUDUUDDD has Dyck subpaths stretching over positions 1-8 (the entire path), 2-3, 2-7, 4-7, 5-6 and so contributes 5 to a(4). - David Callan, Jul 25 2008
a(n+1) is the total number of ascents in the set of all n-permutations avoiding the pattern 132. For example, a(2) = 5 because there are 5 ascents in the set 123, 213, 231, 312, 321. - Cheyne Homberger, Oct 25 2013
Number of increasing tableaux of shape (n+1,n+1) with largest entry 2n+1. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. Example: a(2) = 5 counts the five tableaux (124)(235), (123)(245), (124)(345), (134)(245), (123)(245). - Oliver Pechenik, May 02 2014
a(n) is the number of noncrossing partitions of 2n+1 into n-1 blocks of size 2 and 1 block of size 3. - Oliver Pechenik, May 02 2014
Number of paths in the half-plane x>=0, from (0,0) to (2n+1,3), and consisting of steps U=(1,1) and D=(1,-1). For example, for n=2, we have the 5 paths: UUUUD, UUUDU, UUDUU, UDUUU, DUUUU. - José Luis Ramírez Ramírez, Apr 19 2015
From Gus Wiseman, Aug 20 2021: (Start)
Also the number of binary numbers with 2n+2 digits and with two more 0's than 1's. For example, the a(2) = 5 binary numbers are: 100001, 100010, 100100, 101000, 110000, with decimal values 33, 34, 36, 40, 48. Allowing first digit 0 gives A001791, ranked by A345910/A345912.
Also the number of integer compositions of 2n+2 with alternating sum -2, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. For example, the a(3) = 21 compositions are:
(35) (152) (1124) (11141) (111113)
(251) (1223) (12131) (111212)
(1322) (13121) (111311)
(1421) (14111) (121112)
(2114) (121211)
(2213) (131111)
(2312)
(2411)
The following pertain to these compositions:
- The unordered version is A344741.
- Ranked by A345924 (reverse: A345923).
- A345197 counts compositions by length and alternating sum.
- A345925 ranks compositions with alternating sum 2 (reverse: A345922).
(End)

Examples

			G.f. = x + 5*x^2 + 21*x^3 + 84*x^4 + 330*x^5 + 1287*x^6 + 5005*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • George Grätzer, General Lattice Theory. Birkhauser, Basel, 1998, 2nd edition, p. 474, line -3.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal 4 of triangle A100257. Also a diagonal of A033282.
Equals (1/2) A024483(n+2). Bisection of A037951 and A037955.
Cf. A001263.
Column k=1 of A263771.
Counts terms of A031445 with 2n+2 digits in binary.
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002694 (m = 4), A003516 (m = 5), A002696 (m = 6), A030053 - A030056, A004310 - A004318.

Programs

  • GAP
    List([1..25],n->Binomial(2*n+1,n-1)); # Muniru A Asiru, Aug 09 2018
    
  • Magma
    [Binomial(2*n+1, n-1): n in [1..30]]; // Vincenzo Librandi, Apr 20 2015
    
  • Maple
    with(combstruct): seq((count(Composition(2*n+2), size=n)), n=1..24); # Zerinvary Lajos, May 03 2007
  • Mathematica
    CoefficientList[Series[8/(((Sqrt[1-4x] +1)^3)*Sqrt[1-4x]), {x,0,22}], x] (* Robert G. Wilson v, Aug 08 2011 *)
    a[ n_]:= Binomial[2 n + 1, n - 1]; (* Michael Somos, Apr 25 2014 *)
  • PARI
    {a(n) = binomial( 2*n+1, n-1)};
    
  • Python
    from _future_ import division
    A002054_list, b = [], 1
    for n in range(1,10**3):
        A002054_list.append(b)
        b = b*(2*n+2)*(2*n+3)//(n*(n+3)) # Chai Wah Wu, Jan 26 2016
    
  • Sage
    [binomial(2*n+1, n-1) for n in (1..25)] # G. C. Greubel, Mar 22 2019

Formula

a(n) = Sum_{j=0..n-1} binomial(2*j, j) * binomial(2*n - 2*j, n-j-1)/(j+1). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
G.f.: z*C^4/(2-C), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function. - Emeric Deutsch, Jul 05 2003
From Wolfdieter Lang, Jan 09 2004: (Start)
a(n) = binomial(2*n+1, n-1) = n*C(n+1)/2, C(n)=A000108(n) (Catalan).
G.f.: (1 - 2*x - (1-3*x)*c(x))/(x*(1-4*x)) with g.f. c(x) of A000108. (End)
G.f.: z*C(z)^3/(1-2*z*C(z)), where C(z) is the g.f. of Catalan numbers. - José Luis Ramírez Ramírez, Apr 19 2015
G.f.: 2F1(5/2, 2; 4; 4*x). - R. J. Mathar, Aug 09 2015
D-finite with recurrence: a(n+1) = a(n)*(2*n+3)*(2*n+2)/(n*(n+3)). - Chai Wah Wu, Jan 26 2016
From Ilya Gutkovskiy, Aug 30 2016: (Start)
E.g.f.: (BesselI(0,2*x) + (1 - 1/x)*BesselI(1,2*x))*exp(2*x).
a(n) ~ 2^(2*n+1)/sqrt(Pi*n). (End)
a(n) = (1/(n+1))*Sum_{i=0..n-1} (n+1-i)*binomial(2n+2,i), n >= 1. - Taras Goy, Aug 09 2018
G.f.: (x - 1 + (1 - 3*x)/sqrt(1 - 4*x))/(2*x^2). - Michael Somos, Jul 28 2021
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=1} 1/a(n) = 5/3 - 2*Pi/(9*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 52*log(phi)/(5*sqrt(5)) - 7/5, where phi is the golden ratio (A001622). (End)
a(n) = A001405(2*n+1) - A000108(n+1), n >= 1 (from Eremin link, page 7). - Gennady Eremin, Sep 05 2023
G.f.: x/(1 - 4*x)^2 * c(-x/(1 - 4*x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Feb 03 2024
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * sqrt(x)*(x - 3)/sqrt(4 - x) (see Penson).
G.f. x*/sqrt(1 - 4*x) * c(x)^3. (End)

A001683 Number of one-sided triangulations of the disk; or flexagons of order n; or unlabeled plane trivalent trees (n-2 internal vertices, all of degree 3 and hence n leaves).

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 19, 49, 150, 442, 1424, 4522, 14924, 49536, 167367, 570285, 1965058, 6823410, 23884366, 84155478, 298377508, 1063750740, 3811803164, 13722384546, 49611801980, 180072089896, 655977266884, 2397708652276, 8791599732140, 32330394085528
Offset: 2

Views

Author

Keywords

Comments

a(n) is the number of triangulations of an n-gon (equivalently, the number of vertices of the (n - 3)-dimensional associahedron) modulo the cyclic action [Bowman and Regev]. - N. J. A. Sloane, Dec 29 2012
a(n) is also the number of non-isomorphic cluster-tilted algebras of type A_(n-3), for n greater than or equal to 5. Equivalently it is the number of non-isomorphic quivers in the mutation class of any quiver with underlying graph A_(n-3) for n greater than or equal to 5. - Hermund A. Torkildsen (hermunda(AT)math.ntnu.no), Aug 06 2008
Number of oriented polyominoes composed of n-2 triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 20 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A295224.
A row or column of the array in A262586.
Polyominoes: A000207 (unoriented), A369314 (chiral), A208355(n-1) (achiral), A005034 {4,oo}, A007173 {3,3,oo}.

Programs

  • Maple
    C := n->binomial(2*n,n)/(n+1); c := x->if whattype(x) = integer then C(x) else 0; fi; A001683 := n->C(n-2)/n + c(n/2-1)/2+(2/3)*c(n/3-1);
  • Mathematica
    p=3; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 0, 20}] (* Robert A. Russell, Dec 11 2004 *)
    Rest[Rest[CoefficientList[Series[(6 + (1 - 4 x)^(3/2) + 6 x - 3(1 - 4 x^2)^(1/2) - 4 (1 - 4 x^3)^(1/2))/12, {x, 0, 33}], x]]] (* Vincenzo Librandi, Nov 25 2015 *)
  • PARI
    Cat(n)=if(n==floor(n),return(binomial(2*n,n)/(n+1)));0
    for(n=2,100,print1(Cat(n-2)/n+Cat(n/2-1)/2+(2/3)*Cat(n/3-1),", ")) \\ Derek Orr, Feb 26 2017

Formula

a(n) = C(n-2)/n + C(n/2-1)/2 + (2/3)*C(n/3-1), where C(n) = Catalan(n) (A000108) and terms are omitted if their subscripts are not integers.
G.f.: (6 + (1 - 4*x)^(3/2) + 6*x - 3*(1 - 4*x^2)^(1/2) - 4*(1 - 4*x^3)^(1/2))/12. - David Callan, Aug 01 2004
a(n) ~ 2^(2*n-4) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n+2) = A000207(n) + A369314(n) = 2*A000207(n) - A208355(n-1) = 2*A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
G.f.: z^2 * (4*G(z) - G(z)^2 + 3*G(z^2) + 4*z*G(z^3)) / 6, where G(z) = 1 + z*G(z)^2 is the g.f. for A000108. - Robert A. Russell, Apr 06 2024

A295419 Number of dissections of an n-gon by nonintersecting diagonals into polygons with a prime number of sides counted up to rotations and reflections.

Original entry on oeis.org

1, 1, 2, 4, 8, 23, 64, 222, 752, 2805, 10475, 40614, 158994, 633456, 2548241, 10362685, 42485242, 175557329, 730314350, 3056971164, 12867007761, 54434131848, 231354091945, 987496927875, 4231561861914, 18198894300129, 78533356685275, 339958801585826
Offset: 3

Views

Author

Andrew Howroyd, Nov 22 2017

Keywords

Comments

a(n) first differs from A290816(n) at n=9 since this sequence does not allow the trivial dissection of a nonagon into a single nonagon.

Crossrefs

Programs

  • Mathematica
    DissectionsModDihedral[v_] := Module[{n = Length[v], q, vars, u, R, Q, T, p}, q = Table[0, {n}]; q[[1]] = InverseSeries[x - Sum[x^i v[[i]], {i, 3, Length[v]}]/x + O[x]^(n+1)]; For[i = 2, i <= n, i++, q[[i]] = q[[i-1]] q[[1]]]; vars = Variables[q[[1]]]; u[m_, r_] := Normal[(q[[r]] + O[x]^(Quotient[n, m]+1))] /. Thread[vars -> vars^m]; R = Sum[v[[2i+1]] u[2, i], {i, 1, (Length[v]-1)/2 // Floor}]; Q = Sum[v[[2i]] u[2, i-1], {i, 2, Length[v]/2 // Floor}]; T = Sum[v[[i]] Sum[EulerPhi[d] u[d, i/d], {d, Divisors[i]}]/i, {i, 3, Length[v]}]; p = O[x]^n - x^2 + (x u[1, 1] + u[2, 1] + (Q u[2, 1] - u[1, 2] + (x+R)^2/(1-Q))/2 + T)/2; Drop[ CoefficientList[p, x], 3]];
    DissectionsModDihedral[Boole[PrimeQ[#]]& /@ Range[1, 31]] (* Jean-François Alcover, Sep 25 2019, after Andrew Howroyd *)
  • PARI
    \\ number of dissections into parts defined by set.
    DissectionsModDihedral(v)={my(n=#v);
    my(q=vector(n)); q[1]=serreverse(x-sum(i=3,#v,x^i*v[i])/x + O(x*x^n));
    for(i=2, n, q[i]=q[i-1]*q[1]);
    my(vars=variables(q[1]));
    my(u(m, r)=substvec(q[r]+O(x^(n\m+1)), vars, apply(t->t^m, vars)));
    my(R=sum(i=1, (#v-1)\2, v[2*i+1]*u(2,i)), Q=sum(i=2, #v\2, v[2*i]*u(2,i-1)), T=sum(i=3, #v, my(c=v[i]); if(c, c*sumdiv(i, d, eulerphi(d)*u(d,i/d))/i)));
    my(p=O(x*x^n) - x^2 + (x*u(1,1) + u(2,1) + (Q*u(2,1) - u(1,2) + (x+R)^2/(1-Q))/2 + T)/2);
    vector(n,i,polcoeff(p,i))}
    DissectionsModDihedral(apply(v->isprime(v), [1..25]))

A002055 Number of diagonal dissections of a convex n-gon into n-4 regions.

Original entry on oeis.org

1, 9, 56, 300, 1485, 7007, 32032, 143208, 629850, 2735810, 11767536, 50220040, 212952285, 898198875, 3771484800, 15775723920, 65770848990, 273420862110, 1133802618000, 4691140763400, 19371432850770, 79850555673174
Offset: 5

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n-4,n-4,1,1) (see Stanley reference). - Emeric Deutsch, May 20 2004
Number of increasing tableaux of shape (n-2,n-2) with largest entry 2n-6. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. - Oliver Pechenik, May 02 2014
a(n) = number of noncrossing partitions of 2n-6 into n-4 blocks, each of size at least 2. - Oliver Pechenik, May 02 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = f(n,n+1) where f is given in A034261.

Programs

  • Mathematica
    Table[(Binomial[n-3,2]Binomial[2n-6,n-5])/(n-4),{n,5,30}] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    a(n) = (binomial(n - 3, 2) * binomial(2*n - 6, n - 5))/(n - 4);
    for(n=5, 30, print1(a(n),", ")) \\ Indranil Ghosh, Apr 11 2017

Formula

a(n) = binomial(n-3, 2)*binomial(2*n-6, n-5)/(n-4).
With offset 0, this has a(n)=(n+2)*C(2n+4,n)/2 and e.g.f. dif(dif(x*dif(exp(2x)*Bessel_I(2,2x),x),x),x)/2. - Paul Barry, Aug 25 2007
G.f.: 16*x^5*(x+sqrt(1-4x))/((1-4x)^(3/2) *(1+sqrt(1-4x))^4 ). - R. J. Mathar, Nov 17 2011
D-finite with recurrence: (n-1)*a(n) +(23-11n)*a(n-1) +10*(4n-13)*a(n-2) +10*(23-5n)*a(n-3) +4*(2n-13)*a(n-4)=0. - R. J. Mathar, Nov 17 2011
a(n) ~ 4^n*sqrt(n)/(128*sqrt(Pi)). - Ilya Gutkovskiy, Apr 11 2017

A295634 Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 2, 6, 7, 4, 1, 3, 11, 24, 24, 12, 1, 3, 17, 51, 89, 74, 27, 1, 4, 26, 109, 265, 371, 259, 82, 1, 4, 36, 194, 660, 1291, 1478, 891, 228, 1, 5, 50, 345, 1477, 3891, 6249, 6044, 3176, 733, 1, 5, 65, 550, 3000, 10061, 21524, 29133, 24302, 11326, 2282
Offset: 3

Views

Author

Andrew Howroyd, Nov 24 2017

Keywords

Examples

			Triangle begins: (n >= 3, k >= 1)
1;
1, 1;
1, 1,  1;
1, 2,  3,   3;
1, 2,  6,   7,   4;
1, 3, 11,  24,  24,   12;
1, 3, 17,  51,  89,   74,   27;
1, 4, 26, 109, 265,  371,  259,  82;
1, 4, 36, 194, 660, 1291, 1478, 891, 228;
...
		

Crossrefs

Row sums are A001004.
Column k=3 is A003453.
Diagonals include A000207, A003449, A003450.

Programs

  • PARI
    \\ See A295419 for DissectionsModDihedral()
    T=DissectionsModDihedral(apply(i->y, [1..12]));
    for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print)

A003454 Number of nonequivalent dissections of an n-gon by nonintersecting diagonals rooted at a cell up to rotation.

Original entry on oeis.org

1, 2, 6, 25, 107, 509, 2468, 12258, 61797, 315830, 1630770, 8498303, 44629855, 235974495, 1255105304, 6710883952, 36050676617, 194478962422, 1053120661726, 5722375202661, 31191334491891, 170504130213135, 934495666529380, 5134182220623958, 28270742653671621
Offset: 3

Views

Author

Keywords

Comments

Total number of dissections of an n-gon into polygons without reflection and rooted at a cell. - Sean A. Irvine, May 14 2015
Say two n-gons are equivalent (or in the same convexity class) if there is a bijection between the edges and vertices which preserves inclusion of vertices and edges, preserves the handedness of the polygon (does not reflect the polygon over a line), maps vertices of the convex hulls to each other, and induces an equivalence on each nontrivially connected component of Hull(X) \ X. This sequence is the number of convexity classes for an n-gon, up to rotation. - Griffin N. Macris, Mar 02 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ See A003442 for DissectionsModCyclicRooted.
    DissectionsModCyclicRooted(apply(i->1, [1..30])) \\ Andrew Howroyd, Nov 22 2017

Formula

G.f.: -f(x) - (f(x)^2 + f(x^2))/2 + Sum_{k>=1} (phi(k)/k)*log(1/(1 - f(x^k))), where phi(k) is Euler's Totient function and f(x) = (1 + x - sqrt(1 - 6x + x^2))/4 is related to the o.g.f. for A001003. - Griffin N. Macris, Mar 02 2021

Extensions

More terms from Sean A. Irvine, May 14 2015
Name clarified by Andrew Howroyd, Nov 22 2017

A003455 Number of nonequivalent dissections of an n-gon by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 2, 3, 11, 29, 122, 479, 2113, 9369, 43392, 203595, 975563, 4736005, 23296394, 115811855, 581324861, 2942579633, 15008044522, 77064865555, 398150807179, 2068470765261, 10800665952376, 56658467018647, 298489772155137, 1578702640556193
Offset: 3

Views

Author

Keywords

Comments

Total number of dissections of an n-gon into polygons without reflection. - Sean A. Irvine, May 15 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ See A295495 for DissectionsModCyclic().
    DissectionsModCyclic(apply(v->1, [1..30])) \\ Andrew Howroyd, Nov 22 2017

Extensions

More terms from Sean A. Irvine, May 15 2015
Name clarified by Andrew Howroyd, Nov 22 2017

A002056 Number of diagonal dissections of a convex n-gon into n-5 regions.

Original entry on oeis.org

1, 14, 120, 825, 5005, 28028, 148512, 755820, 3730650, 17978180, 84987760, 395482815, 1816357725, 8250123000, 37119350400, 165645101160, 733919156190, 3231337461300, 14147884842000, 61636377252450, 267325773340626, 1154761882042824, 4969989654817600
Offset: 6

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n-5,n-5,1,1,1) (see Stanley reference). - Emeric Deutsch, May 20 2004
Number of increasing tableaux of shape (n-2,n-2) with largest entry 2n-7. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. - Oliver Pechenik, May 02 2014
Number of noncrossing partitions of 2n-7 into n-5 blocks all of size at least 2. - Oliver Pechenik, May 02 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    [Binomial(n-3, 3)*Binomial(2*n-7, n-6)/(n-5): n in [6..30]]; // Vincenzo Librandi, Feb 18 2020
  • Maple
    A002056:=n->binomial(n-3,3)*binomial(2*n-7,n-6)/(n-5): seq(A002056(n), n=6..40); # Wesley Ivan Hurt, Apr 12 2017
  • Mathematica
    Table[Binomial[n - 3, 3] Binomial[2n - 7, n - 6]/(n - 5), {n, 6, 50}] (* Indranil Ghosh, Apr 11 2017 *)

Formula

a(n) = binomial(n-3, 3)*binomial(2n-7, n-6)/(n-5).
G.f.: (x-1+(1-11*x+40*x^2-50*x^3+10*x^4)*(1-4*x)^(-5/2))/(2*x^5). - Mark van Hoeij, Oct 25 2011
a(n) ~ 4^n*n^(3/2)/(768*sqrt(Pi)). - Ilya Gutkovskiy, Apr 11 2017
D-finite with recurrence: -(n-1)*(n-5)*(n-6)*a(n) +2*(2*n-7)*(n-3)*(n-4)*a(n-1)=0. - R. J. Mathar, Feb 16 2020

A003456 Number of nonequivalent dissections of an n-gon by nonintersecting diagonals rooted at a cell up to rotation and reflection.

Original entry on oeis.org

1, 2, 5, 17, 62, 275, 1272, 6225, 31075, 158376, 816229, 4251412, 22319056, 117998524, 627573216, 3355499036, 18025442261, 97239773408, 526560862829, 2861189112867, 15595669996482, 85252072993968, 467247847612316, 2567091151780343
Offset: 3

Views

Author

Keywords

Comments

Total number of dissections of an n-gon into polygons with reflection and rooted at a cell. - Sean A. Irvine, May 14 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ See A003447 for DissectionsModDihedralRooted()
    DissectionsModDihedralRooted(apply(i->1, [1..30]))

Extensions

More terms from Sean A. Irvine, May 14 2015
Name clarified by Andrew Howroyd, Nov 24 2017
a(15) corrected by Andrew Howroyd, Nov 24 2017

A003441 Number of nonequivalent dissections of a polygon into n triangles by nonintersecting diagonals rooted at a cell up to rotation.

Original entry on oeis.org

1, 1, 3, 10, 30, 99, 335, 1144, 3978, 14000, 49742, 178296, 643856, 2340135, 8554275, 31429068, 115997970, 429874830, 1598952498, 5967382200, 22338765540, 83859016956, 315614844558, 1190680751376, 4501802224520, 17055399281284
Offset: 1

Views

Author

Keywords

Comments

Number of dissections of regular (n+2)-gon into n polygons without reflection and rooted at a cell. - Sean A. Irvine, May 05 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A295222.

Programs

  • Maple
    [seq(combstruct[count]([C, {C=Cycle(BT,card=3),BT=Union(Z,Prod(BT,BT))}],size=n),n=0..12)];
  • Mathematica
    a[n_] := DivisorSum[GCD[3, n-1], EulerPhi[#] Binomial[(2n+1)/#, (n-1)/#]/ (2n+1)&];
    Array[a, 30] (* Jean-François Alcover, Jul 02 2018 *)
  • PARI
    catalan(n) = binomial(2*n, n)/(n+1);
    a(n) = binomial(2*n+1, n-1)/(2*n+1) + 2/3*(if ((n-1) % 3, 0, catalan((n-1)/3))); \\ Michel Marcus, Jan 23 2016

Formula

a(n) = number of necklaces of n-1 white beads and n+2 black beads. a(n) = binomial(2n+1, n-1)/(2n+1) + (2/3)*C((n-1)/3) where C is the Catalan number A000108 (assumed to be 0 for nonintegral argument). G.f.: ( ((1-sqrt(1-4x))/2)^3 + (1-sqrt(1-4x^3)) )/(3x^2).
Numbers so far suggest that two trisections of sequence agree with those of A050181. - Ralf Stephan, Mar 28 2004

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
Name edited by Andrew Howroyd, Nov 20 2017
Showing 1-10 of 20 results. Next