Original entry on oeis.org
1, 10, 66, 366, 1851, 8858, 40890, 184098, 813948, 3549758, 15317294, 65537334, 278489619, 1176688494, 4948173294, 20723897214, 86494746204, 359915608314, 1493718226314, 6184858989714, 25556291840484, 105406847513658
Offset: 5
a(9) = 1 + 9 + 56 + 300 + 1485 = 1851 = 3 * 617.
A033282
Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon into k+1 regions.
Original entry on oeis.org
1, 1, 2, 1, 5, 5, 1, 9, 21, 14, 1, 14, 56, 84, 42, 1, 20, 120, 300, 330, 132, 1, 27, 225, 825, 1485, 1287, 429, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 1, 54, 936, 7644, 34398, 91728, 148512, 143208, 75582, 16796
Offset: 3
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9
3: 1
4: 1 2
5: 1 5 5
6: 1 9 21 14
7: 1 14 56 84 42
8: 1 20 120 300 330 132
9: 1 27 225 825 1485 1287 429
10: 1 35 385 1925 5005 7007 5005 1430
11: 1 44 616 4004 14014 28028 32032 19448 4862
12: 1 54 936 7644 34398 91728 148512 143208 75582 16796
... reformatted. - _Wolfdieter Lang_, Mar 17 2017
- S. Devadoss and J. O'Rourke, Discrete and Computational Geometry, Princeton Univ. Press, 2011 (See p. 241.)
- Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994. Exercise 7.50, pages 379, 573.
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 5.8.
- Vincenzo Librandi, Table of n, a(n) for n = 3..2000
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Karin Baur and P. P. Martin, The fibres of the Scott map on polygon tilings are the flip equivalence classes, arXiv:1601.05080 [math.CO], 2016.
- David Beckwith, Legendre polynomials and polygon dissections?, Amer. Math. Monthly, 105 (1998), 256-257.
- William Butler, Andrew Kalotay and N. J. A. Sloane, Correspondence, 1974
- Arthur Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff. (See p. 239.)
- Adrian Celestino and Yannic Vargas, Schröder trees, antipode formulas and non-commutative probability, arXiv:2311.07824 [math.CO], 2023.
- Frédéric Chapoton, Enumerative properties of generalized associahedra, Séminaire Lotharingien de Combinatoire, B51b (2004), 16 pp.
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015.
- Manosij Ghosh Dastidar and Michael Wallner, Bijections and congruences involving lattice paths and integer compositions, arXiv:2402.17849 [math.CO], 2024. See p. 16.
- Jesús A. De Loera, Jörg Rambau, and Francisco Santos Leal, Triangulations of Point Sets [From Tom Copeland Oct 11 2011]
- Satyan L. Devadoss, Combinatorial Equivalence of Real Moduli Spaces, Notices Amer. Math. Soc. 51 (2004), no. 6, 620-628.
- Satyan L. Devadoss and Ronald C. Read, Cellular structures determined by polygons and trees, arXiv/0008145 [math.CO], 2000. [From Tom Copeland Nov 21 2017]
- Anton Dochtermann, Face rings of cycles, associahedra, and standard Young tableaux, arXiv preprint arXiv:1503.06243 [math.CO], 2015.
- Brian Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7.
- Cassandra Durell and Stefan Forcey, Level-1 Phylogenetic Networks and their Balanced Minimum Evolution Polytopes, arXiv:1905.09160 [math.CO], 2019.
- P. Flajolet and M. Noy, Analytic Combinatorics of Non-crossing Configurations, Discrete Math., 204, 1999, 203-229.
- Sergey Fomin and Nathan Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004, arXiv:math/0505518 [math.CO], 2005-2008. [From _Peter Bala_, Oct 28 2008]
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras I: Foundations, arXiv:math/0104151 [math.RT], 2001.
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002) no.2, 497-529.
- Sergey Fomin and Andrei Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
- Rijun Huang, Fei Teng, and Bo Feng, Permutation in the CHY-Formulation, arXiv:1801.08965 [hep-th], 2018.
- Germain Kreweras, Sur les partitions non croisées d'un cycle, (French) Discrete Math. 1 (1972), no. 4, 333--350. MR0309747 (46 #8852).
- Germain Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
- Germain Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- Germain Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- Germain Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Thibault Manneville and Vincent Pilaud, Compatibility fans for graphical nested complexes, arXiv:1501.07152 [math.CO], 2015.
- Sebastian Mizera, Combinatorics and topology of Kawai-Lewellen-Tye relations J. High Energy Phys. 2017, No. 8, Paper No. 97, 54 p. (2017).
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, arXiv:1505.07665 [math.CO], 2015.
- Vincent Pilaud and V. Pons, Permutrees, arXiv:1606.09643 [math.CO], 2016-2017.
- Ronald C. Read, On general dissections of a polygon, Aequat. Math. 18 (1978), 370-388.
- Dean Rubine, Exercises for A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode, arXiv:2507.13045 [math.CO], 2025. See p. 9.
- Rodica Simion, Convex Polytopes and Enumeration, Adv. in Appl. Math. 18 (1997) pp. 149-180.
- Richard P. Stanley, Polygon dissections and standard Young tableaux, J. Comb. Theory, Ser. A, 76, 175-177, 1996.
- Rekha R. Thomas, Lectures in Geometric Combinatorics [_Tom Copeland_, Oct 11 2011]
Cf. diagonals:
A000012,
A000096,
A033275,
A033276,
A033277,
A033278,
A033279;
A000108,
A002054,
A002055,
A002056,
A007160,
A033280,
A033281; row sums:
A001003 (Schroeder numbers, first term omitted). See
A086810 for another version.
Cf.
A019538 'faces' of the permutohedron.
Cf.
A063007 (f-vectors type B associahedra),
A080721 (f-vectors type D associahedra),
A126216 (mirror image).
Cf.
A248727 for a relation to f-polynomials of simplices.
Cf.
A111785 (contracted partition array, unsigned; see a comment above).
-
[[Binomial(n-3, k)*Binomial(n+k-1, k)/(k+1): k in [0..(n-3)]]: n in [3..12]]; // G. C. Greubel, Nov 19 2018
-
T:=(n,k)->binomial(n-3,k)*binomial(n+k-1,k)/(k+1): seq(seq(T(n,k),k=0..n-3),n=3..12); # Muniru A Asiru, Nov 24 2018
-
t[n_, k_] = Binomial[n-3, k]*Binomial[n+k-1, k]/(k+1);
Flatten[Table[t[n, k], {n, 3, 12}, {k, 0, n-3}]][[1 ;; 52]] (* Jean-François Alcover, Jun 16 2011 *)
-
Q=(1+z-(1-(4*w+2+O(w^20))*z+z^2+O(z^20))^(1/2))/(2*(1+w)*z);for(n=3,12,for(m=1,n-2,print1(polcoef(polcoef(Q,n-2,z),m,w),", "))) \\ Hugo Pfoertner, Nov 19 2018
-
for(n=3,12, for(k=0,n-3, print1(binomial(n-3,k)*binomial(n+k-1,k)/(k+1), ", "))) \\ G. C. Greubel, Nov 19 2018
-
[[ binomial(n-3,k)*binomial(n+k-1,k)/(k+1) for k in (0..(n-3))] for n in (3..12)] # G. C. Greubel, Nov 19 2018
Missing factor of 2 for expansions of f1 and f2 added by
Tom Copeland, Apr 12 2009
A086810
Triangle obtained by adding a leading diagonal 1,0,0,0,... to A033282.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 9, 21, 14, 0, 1, 14, 56, 84, 42, 0, 1, 20, 120, 300, 330, 132, 0, 1, 27, 225, 825, 1485, 1287, 429, 0, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 0, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 0, 1, 54, 936, 7644, 34398, 91728
Offset: 0
Triangle starts:
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 9, 21, 14;
...
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
- Yu Hin (Gary) Au, Some Properties and Combinatorial Implications of Weighted Small Schröder Numbers, arXiv:1912.00555 [math.CO], 2019.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- V. Buchstaber and E. Bunkova,Elliptic formal group laws, integral Hirzebruch genera and Kirchever genera,, arXiv:1010.0944 [math-ph], 2010 (see p. 19).
- V. Buchstaber and T. Panov, Toric Topology. Chapter 1: Geometry and Combinatorics of Polytopes,, arXiv:1102.1079 [math.CO], 2011-2012 (see p. 41).
- G. Chatel, V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015.
- T. Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015.
- T. Copeland, Compositional inverse pairs, the Burgers-Hopf equation, and the Stasheff associahedra, 2014.
- T. Copeland, Lagrange a la Lah, 2011.
- B. Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973, p. 21-22.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- J. Zhou, Quantum deformation theory of the Airy curve and the mirror symmetry of a point, arXiv preprint arXiv:1405.5296 [math.AG], 2014.
Diagonals:
A000007,
A000012,
A000096,
A033275,
A033276,
A033277,
A033278,
A033279,
A000108,
A002054,
A002055,
A002056,
A007160,
A033280,
A033281.
Row sums:
A001003 (Schroeder numbers).
-
Table[Boole[n == 2] + If[# == -1, 0, Binomial[n - 3, #] Binomial[n + # - 1, #]/(# + 1)] &[k - 1], {n, 2, 12}, {k, 0, n - 2}] // Flatten (* after Jean-François Alcover at A033282, or *)
Table[If[n == 0, 1, Binomial[n, k] Binomial[n + k, k - 1]/n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)
-
t(n, k) = if (n==0, 1, binomial(n, k)*binomial(n+k, k-1)/n);
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n,k), ", ");); print(););} \\ Michel Marcus, Nov 22 2014
A126216
Triangle read by rows: T(n,k) is the number of Schroeder paths of semilength n containing exactly k peaks but no peaks at level one (n >= 1; 0 <= k <= n-1).
Original entry on oeis.org
1, 2, 1, 5, 5, 1, 14, 21, 9, 1, 42, 84, 56, 14, 1, 132, 330, 300, 120, 20, 1, 429, 1287, 1485, 825, 225, 27, 1, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1
Offset: 1
T(3,1)=5 because we have HUUDD, UUDDH, UUUDDD, UHUDD and UUDHD.
Triangle starts:
n\k 0 1 2 3 4 5 6 7 8
1 1;
2 2, 1;
3 5, 5; 1;
4 14, 21, 9, 1;
5 42, 84, 56, 14, 1;
6 132, 330, 300, 120, 20, 1;
7 429, 1287, 1485, 825, 225, 27, 1;
8 1430, 5005, 7007, 5005, 1925, 385, 35, 1;
9 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1;
10 ...
Triangle [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,...] begins:
1;
1, 0;
2, 1, 0;
5, 5, 1, 0;
14, 21, 9, 1, 0;
42, 84, 56, 14, 1, 0;
...
- Gheorghe Coserea, Rows n = 1..200, flattened
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- W. Y. C. Chen, T. Mansour and S. H. F. Yan, Matchings avoiding partial patterns, The Electronic Journal of Combinatorics 13, 2006, #R112, Theorem 3.3.
- D. Callan, Polygon Dissections and Marked Dyck Paths
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015.
- D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010) #10.9.2.
- Rosena R. X. Du, Xiaojie Fan, and Yue Zhao, Enumeration on row-increasing tableaux of shape 2 X n, arXiv:1803.01590 [math.CO], 2018.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- S. Mizera, Combinatorics and Topology of Kawai-Lewellen-Tye Relations, arXiv:1706.08527 [hep-th], 2017.
- Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012.
- Jean-Christophe Novelli and Jean-Yves Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 7.
- I. Pak and A. Postnikov, Enumeration of trees and one amazing representation of the symmetric group, Proceedings of the 8-th International Conference FPSAC, 1996.
-
T:=(n,k)->binomial(n,k)*binomial(2*n-k,n+1)/n: for n from 1 to 11 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form
-
Table[Binomial[n, k] Binomial[2 n - k, n + 1]/n, {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Jan 09 2016 *)
-
tabl(nn) = {mP = matrix(nn, nn, n, k, binomial(n-1, k-1)); mN = matrix(nn, nn, n, k, binomial(n-1, k-1) * binomial(n, k-1) / k); mprod = mN*mP; for (n=1, nn, for (k=1, n, print1(mprod[n, k], ", ");); print(););} \\ Michel Marcus, Apr 16 2015
-
t(n,k) = binomial(n,k)*binomial(2*n-k,n+1)/n;
concat(vector(10, n, vector(n, k, t(n,k-1)))) \\ Gheorghe Coserea, Apr 24 2016
A256117
Number T(n,k) of length 2n words such that all letters of the k-ary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 9, 5, 0, 1, 34, 56, 14, 0, 1, 125, 465, 300, 42, 0, 1, 461, 3509, 4400, 1485, 132, 0, 1, 1715, 25571, 55692, 34034, 7007, 429, 0, 1, 6434, 184232, 657370, 647920, 231868, 32032, 1430, 0, 1, 24309, 1325609, 7488228, 11187462, 6191808, 1447992, 143208, 4862
Offset: 0
T(0,0) = 1: (the empty word).
T(1,1) = 1: aa.
T(2,1) = 1: aaaa.
T(2,2) = 2: aabb, abba.
T(3,1) = 1: aaaaaa.
T(3,2) = 9: aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba.
T(3,3) = 5: aabbcc, aabccb, abbacc, abbcca, abccba.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 9, 5;
0, 1, 34, 56, 14;
0, 1, 125, 465, 300, 42;
0, 1, 461, 3509, 4400, 1485, 132;
0, 1, 1715, 25571, 55692, 34034, 7007, 429;
0, 1, 6434, 184232, 657370, 647920, 231868, 32032, 1430;
...
Columns k=0-10 give:
A000007,
A057427,
A010763(n-1) (for n>1),
A258490,
A258491,
A258492,
A258493,
A258494,
A258495,
A258496,
A258497.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1))
end:
T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz, updated Jan 01 2021 *)
A133336
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 5, 5, 1, 0, 14, 21, 9, 1, 0, 42, 84, 56, 14, 1, 0, 132, 330, 300, 120, 20, 1, 0, 429, 1287, 1485, 825, 225, 27, 1, 0, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 0, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 0, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1, 0
Offset: 0
Triangle begins:
1;
1, 0;
2, 1, 0;
5, 5, 1, 0;
14, 21, 9, 1, 0;
42, 84, 56, 14, 1, 0;
132, 330, 300, 120, 20, 1, 0;
429, 1287, 1485, 825, 225, 27, 1, 0;
-
[[Binomial(n-1,k)*Binomial(2*n-k,n)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 05 2018
-
Table[Binomial[n-1,k]*Binomial[2*n-k,n]/(n+1), {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 05 2018 *)
-
for(n=0,10, for(k=0,n, print1(binomial(n-1,k)*binomial(2*n-k,n)/(n+1), ", "))) \\ G. C. Greubel, Feb 05 2018
A286784
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 5, 15, 9, 1, 14, 56, 56, 16, 1, 42, 210, 300, 150, 25, 1, 132, 792, 1485, 1100, 330, 36, 1, 429, 3003, 7007, 7007, 3185, 637, 49, 1, 1430, 11440, 32032, 40768, 25480, 7840, 1120, 64, 1, 4862, 43758, 143208, 222768, 179928, 77112, 17136, 1836, 81, 1, 16796, 167960, 629850, 1162800, 1162800, 651168, 203490, 34200, 2850, 100, 1
Offset: 0
A(x;t) = 1 + (1 + t)*x + (2 + 4*t + t^2)*x^2 + (5 + 15*t + 9*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 1;
[1] 1, 1;
[2] 2, 4, 1;
[3] 5, 15, 9, 1;
[4] 14, 56, 56, 16, 1;
[5] 42, 210, 300, 150, 25, 1;
[6] 132, 792, 1485, 1100, 330, 36, 1;
[7] 429, 3003, 7007, 7007, 3185, 637, 49, 1;
[8] 1430, 11440, 32032, 40768, 25480, 7840, 1120, 64, 1;
[9] 4862, 43758, 143208, 222768, 179928, 77112, 17136, 1836, 81, 1;
[10] ...
-
/* As triangle */ [[(Binomial(2*n, n+m)*Binomial(n+1, m))/(n+1): m in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 23 2018
-
Flatten@Table[Binomial[2 n, n + m] Binomial[n + 1, m] / (n + 1), {n, 0, 10}, {m, 0, n}] (* Vincenzo Librandi, Sep 23 2018 *)
-
T(n,m):=(binomial(2*n,n+m)*binomial(n+1,m))/(n+1); /* Vladimir Kruchinin, Sep 23 2018 */
-
A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x;
concat(apply(p->Vecrev(p), Vec(A286784_ser(12))))
\\ test: y=A286784_ser(50); y*(1-x*y)^2 == 1 + ('t-1)*x*y
A257888
Number of nonintersecting (or self-avoiding) rook paths of length 2n+2 joining opposite corners of an n X n grid.
Original entry on oeis.org
4, 36, 224, 1200, 5940, 28028, 128128, 572832, 2519400, 10943240, 47070144, 200880160, 851809140, 3592795500, 15085939200, 63102895680, 263083395960, 1093683448440, 4535210472000, 18764563053600, 77485731403080, 319402222692696, 1314511549519104
Offset: 3
-
a[n_] := 2 Sum[Sum[
Binomial[j + k, k]*Binomial[2 n - k - j - 1, n - k + 1], {k,
n}], {j, 0, n - 2}]
CoefficientList[Series[(2(-1+Sqrt[1-4x]+x(7-5Sqrt[1-4x] +2x(-6+2Sqrt[ 1-4x] +x))))/ ((1-4x)^(3/2)x^2), {x, 0, 20}],x] (* Benedict W. J. Irwin, Jul 13 2016 *)
-
a(n) = 2*n*binomial(2*n,n-2) \\ Charles R Greathouse IV, May 21 2015
Showing 1-8 of 8 results.
Comments