The bracketed partitions of P(n,t) are of the form (u_1)^e(1) (u_2)^e(2) ... (u_n)^e(n) with coefficients given by (-1)^(n-1+e(1)) * [2*(n-1)-e(1)]! / [ (e(2))! * (e(3))! * ... * (e(n))! ].
Let h(t) = 1/(df(t)/dt)
= 1/Ev[u./(1-u.t)^2]
= 1/((u_1) + 2*(u_2)*t + 3*(u_3)*t^2 + 4*(u_4)*t^3 + ...),
where Ev denotes umbral evaluation.
Then for the partition polynomials of
A133437,
n!*P(n,t) = ((t*h(y)*d/dy)^n) y evaluated at y=0,
and the compositional inverse of f(t) is
g(t) = exp(t*h(y)*d/dy) y evaluated at y=0.
Also, dg(t)/dt = h(g(t)). (End)
With exp[x* PS(.,t)] = exp[t*g(x)] = exp[x*h(y)d/dy] exp(t*y) eval. at y=0, the raising/creation and lowering/annihilation operators defined by R PS(n,t)=PS(n+1,t) and L PS(n,t) = n*PS(n-1,t) are
R = t*h(d/dt) = t* 1/[(u_1) + 2*(u_2)*d/dt + 3*(u_3)*(d/dt)^2 + ...] and
L = f(d/dt) = (u_1)*d/dt + (u_2)*(d/dt)^2 + (u_3)*(d/dt)^3 + ....
Then P(n,t) = (t^n/n!) dPS(n,z)/dz eval. at z=0. (Cf.
A139605,
A145271, and link therein to Mathemagical Forests for relation to planted trees on p. 13.) (End)
The bracketed partition polynomials of P(n,t) are also given by (d/dx)^(n-1) 1/[u_1 + u_2 * x + u_3 * x^2 + ... + u_n * x^(n-1)]^n evaluated at x=0. -
Tom Copeland, Jul 07 2015
Let PS(n,u1,u2,...,un) = P(n,t) / t^n, i.e., the square-bracketed part of the partition polynomials in the expansion for the inverse in the comment section, with u_k = uk.
Also let PS(n,u1=1,u2,...,un) = PB(n,b1,b2,...,bK,...) where each bK represents the partitions of PS, with u1 = 1, that have K components or blocks, e.g., PS(5,1,u2,...,u5) = PB(5,b1,b2,b3,b4) = b1 + b2 + b3 + b4 with b1 = -u5, b2 = 6 u2 u4 + 3 u3^2, b3 = -21 u2^2 u3, and b4 = 14 u2^4.
The relation between solutions of the inviscid Burgers' equation and compositional inverse pairs (cf.
A086810) implies that, for n > 2, PB(n, 0 * b1, 1 * b2, ..., (K-1) * bK, ...) = [(n+1)/2] * Sum_{k = 2..n-1} PS(n-k+1,u_1=1,u_2,...,u_(n-k+1)) * PS(k,u_1=1,u_2,...,u_k).
For example, PB(5,0 * b1, 1 * b2, 2 * b3, 3 * b4) = 3 * 14 u2^4 - 2 * 21 u2^2 u3 + 1 * 6 u2 u4 + 1 * 3 u3^2 - 0 * u5 = 42 u2^4 - 42 u2^2 u3 + 6 u2 u4 + 3 u3^2 = 3 * [2 * PS(2,1,u2) * PS(4,1,u2,...,u4) + PS(3,1,u2,u3)^2] = 3 * [ 2 * (-u2) (-5 u2^3 + 5 u2 u3 - u4) + (2 u2^2 - u3)^2].
Also, PB(n,0*b1,1*b2,...,(K-1)*bK,...) = d/dt t^(n-2)*PS(n,u1=1/t,u2,...,un)|
{t=1} = d/dt (1/t)*PS(n,u1=1,t*u2,...,t*un)|{t=1}.
(End)
Equivalent matrix computation: Multiply the m-th diagonal (with m=1 the index of the main diagonal) of the lower triangular Pascal matrix
A007318 by f_m = m!*u_m = (d/dx)^m f(x) evaluated at x=0 to obtain the matrix UP with UP(n,k) = binomial(n,k) f_{n+1-k}, or equivalently multiply the diagonals of
A132159 by u_m. Then P(n,t) = (1, 0, 0, 0, ...) [UP^(-1) * S]^(n-1) FC * t^n/n!, where S is the shift matrix
A129185, representing differentiation in the basis x^n//n!, and FC is the first column of UP^(-1), the inverse matrix of UP. These results follow from
A145271 and
A133314.
Also, P(n,t) = (1, 0, 0, 0, ...) [UP^(-1) * S]^n (0, 1, 0, ...)^T * t^n/n! in agreement with
A139605. (End)
A recursion relation for computing each partition polynomial of this entry from the lower order polynomials and the coefficients of the refined Lah polynomials of
A130561 is presented in the blog entry "Formal group laws and binomial Sheffer sequences." -
Tom Copeland, Feb 06 2018
The derivative of the partition polynomials of
A350499 with respect to a distinguished indeterminate give polynomials proportional to those of this entry. The connection of this derivative relation to the inviscid Burgers-Hopf evolution equation is given in a reference for that entry. -
Tom Copeland, Feb 19 2022
Comments