cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001005 Number of ways of partitioning n points on a circle into subsets only of sizes 2 and 3.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 8, 21, 42, 96, 222, 495, 1177, 2717, 6435, 15288, 36374, 87516, 210494, 509694, 1237736, 3014882, 7370860, 18059899, 44379535, 109298070, 269766655, 667224480, 1653266565, 4103910930, 10203669285, 25408828065, 63364046190, 158229645720, 395632288590, 990419552730
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of rooted trees on n nodes such that each node has 0, 2, or 3 children. - Patrick Devlin, Mar 04 2012
a(n) is the number of Motzkin paths that have no flatsteps (F) at ground level and avoid a factor of the form FMF with M a Motzkin path (possibly empty). For example, a(5) = 5 counts UDUFD, UFDUD, UFUDD, UUDFD, UUFDD but not UFFFD. Proof: Such a path can have at most one flatstep at height 1 before the first return to ground level or else the first component will contain an FMF. Hence, with a dot denoting concatenation, such a path is either empty or has the form U.P1.D.P2 or the form U.P1.F.P2.D.P3 where P1, P2, P3 are all paths of the type being counted. Hence the gf F(x) = 1 + x^2 + x^3 + 2*x^4 + ... satisfies F = 1 + x^2*F^2 + x^3*F^3. - David Callan, Nov 21 2021

Examples

			a(7)=21: 7 rotations of [12][34][567], 7 rotations of [12][45][367], 7 rotations of [12][37][456]. - _Len Smiley_, Jun 18 2005
From _Wolfdieter Lang_, Nov 05 2018: (Start)
a(7) = b(8)/8, where b(8) = (d^7/dx^7)((1 + x^2 + x^3)^8)/7! evaluated for x = 0, which is 168, and 168/8 = 21.
a(7) =(1/8)*8!/((8-(2+1))!*2!*1!) =(1/8)*8!/(5!*2!)= 168/8 = 21, from the only solution [e2, e3] = [2, 1] of 2*e2 + 3*e3 = 7. (End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A321201.

Programs

  • Maple
    a:=proc(n::nonnegint) local k,j; a(n):=0; for k from 0 to floor(n/2) do for j from 0 to floor(n/3) do if (2*k+3*j=n) then a(n):=a(n)+(n)!/(k!*j!*(n-k-j+1)!) fi od od; print(a(n)) end proc; seq(a(i),i=0..30); # Len Smiley, Jun 18 2005
    A001005 := n -> ifelse(n=0, 1, add(binomial(n, k-1)*binomial(k, n-2*k)/k, k = 1 + iquo(n-1,3)..iquo(n,2))): seq(A001005(n), n=0..35); # Peter Luschny, Oct 18 2022
  • Mathematica
    Table[Sum[(n)!/(k!*j!*(n - k - j + 1)!) * KroneckerDelta[2*k + 3*j - n], {k, 0, Floor[n/2]}, {j, 0, Floor[n/3]}], {n, 0, 20}] (* Ricardo Bittencourt, Jun 09 2013 *)
    CoefficientList[ InverseSeries[x/(1+x^2+x^3) + O[x]^66]/x, x] (* Jean-François Alcover, Feb 15 2016, after Joerg Arndt*)
  • PARI
    Vec(serreverse(x/(1+x^2+x^3)+O(x^66))/x) /* Joerg Arndt, Aug 19 2012 */

Formula

G.f. for a(n-1), with a(-1) = 0, satisfies A(x)=x*(1+A(x)^2+A(x)^3). - Christian G. Bower, Dec 15 1999
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..floor(n/3)} n!/(k!*j!*(n-k-j+1)!)*[2*k+3*j=n]. - Len Smiley, Jun 18 2005
Recurrence: 2*(n+1)*(2*n+3)*(26*n+1)*a(n) = -(n-1)*(26*n^2 + 53*n + 18)*a(n-1) + 6*(n-1)*(78*n^2 + 42*n - 25)*a(n-2) + 31*(n-2)*(n-1)*(26*n+27)*a(n-3). - Vaclav Kotesovec, Aug 14 2013
a(n) ~ c*d^n/n^(3/2), where d = ((6371-624*sqrt(78))^(1/3)+(6371+624*sqrt(78))^(1/3)-1)/12 = 2.610718613276039349818649... is the root of the equation 4d^3 + d^2 - 18d - 31 = 0 and c = d^2 / (2*sqrt(Pi)*sqrt(1 + 3*d + sqrt(1 + 3*d))) = 0.559628309722556021604897336422272... - Vaclav Kotesovec, Aug 14 2013, updated Jun 27 2018
a(n) = Sum_{k=1..floor(n/2)} C(n,k-1)*C(k,n-2k)/k, n > 0. - Michael D. Weiner, Mar 02 2015
From Wolfdieter Lang, Nov 05 2018: (Start)
The o.g.f of a(n) is G(x) = F^[-1](x)/x, where F^[-1](x) is the compositional inverse of F(y) = y/(1 + y^2 + y^3), that is F(F^[-1](x)) = x, identically. (Compare this with the g.f. given above, and see the Pari and Mathematica programs below.)
a(n) = b(n+1)/(n+1), for n >= 0, where b(n+1) is the coefficient of x^n of (1 + x^2 + x^3)^(n+1). This follows from the Lagrange inversion series for G(x) = F^[-1](x)/x.
a(n) = (1/(n+1))*(Sum_{2*e2 + 3*e3 = n} (n+1)!/(n+1 - (e2 + e3))!*e2!*e3!) (from the multinomial formula for (x1 + x2 + x3)^(n+1)). For the solutions of 2*e2 + 3*e3 = n see the array A321201.
(End)

Extensions

More terms from Christian G. Bower, Dec 15 1999