A001013 Jordan-Polya numbers: products of factorial numbers A000142.
1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256, 288, 384, 432, 480, 512, 576, 720, 768, 864, 960, 1024, 1152, 1296, 1440, 1536, 1728, 1920, 2048, 2304, 2592, 2880, 3072, 3456, 3840, 4096, 4320, 4608, 5040, 5184, 5760
Offset: 1
Examples
864 = (3!)^2*4!.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B23, p. 123.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 987 terms from T. D. Noe)
- Jean-Marie De Koninck, Nicolas Doyon, A. Arthur Bonkli Razafindrasoanaivolala and William Verreault, Bounds for the counting function of the Jordan-Pólya numbers, Archivum Mathematicum, Vol. 56, No. 3 (2020), pp. 141-152; also on arXiv, arXiv:2107.09114 [math.NT], 2021.
- Martin Charles Golumbic, Comparability graphs and a new matroid, Journal of Combinatorial Theory, Series B, Vol. 22, No. 1 (1977), pp. 68-90.
- Camille Jordan, Sur les assemblages de lignes, Journal für die reine und angewandte Mathematik, Vol. 70 (1869), pp. 185-190; alternative link.
- Robert A. Melter, Autometrized unary algebras, J. Combinatorial Theory, Vol. 5, No. 1 (1968), pp. 21-29.
- George Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Mathematica, Vol. 68 (1937), pp. 145-254; alternative link.
- Eric Weisstein's World of Mathematics, Factorial Products.
- Index entries for sequences related to factorial numbers
- Index entries for sequences related to trees
Crossrefs
Programs
-
Haskell
import Data.Set (empty, fromList, deleteFindMin, union) import qualified Data.Set as Set (null) a001013 n = a001013_list !! (n-1) a001013_list = 1 : h 0 empty [1] (drop 2 a000142_list) where h z s mcs xs'@(x:xs) | Set.null s || x < m = h z (union s (fromList $ map (* x) mcs)) mcs xs | m == z = h m s' mcs xs' | otherwise = m : h m (union s' (fromList (map (* m) $ init (m:mcs)))) (m:mcs) xs' where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Nov 13 2014
-
Maple
N:= 10000: # get all terms <= N S:= {1}: for k from 2 do kf:= k!; if kf > N then break fi; S := S union {seq(seq(kf^j * s, j = 1 .. floor(log[kf](N/s))),s=S)}; od: S; # if using Maple 11 or earlier, uncomment the next line: # sort(convert(S,list)); # Robert Israel, Sep 09 2014
-
Mathematica
For[p=0; a=f=Table[n!, {n, 1, 8}], p=!=a, p=a; a=Select[Union@@Outer[Times, f, a], #<=8!&]]; a
-
PARI
list(lim,mx=lim)=if(lim<2, return([1])); my(v=[1],t=1); for(n=2,mx, t*=n; if(t>lim, break); v=concat(v,t*list(lim\t, t))); Set(v) \\ Charles R Greathouse IV, May 18 2015
-
Python
def aupto(lim, mx=None): if lim < 2: return [1] v, t = [1], 1 if mx == None: mx = lim for k in range(2, mx+1): t *= k if t > lim: break v += [t*rest for rest in aupto(lim//t, t)] return sorted(set(v)) print(aupto(5760)) # Michael S. Branicky, Jul 21 2021 after Charles R Greathouse IV
-
Sage
# uses[prod_hull from A246663] prod_hull(factorial, 5760) # Peter Luschny, Sep 09 2014
Extensions
More terms, formula from Christian G. Bower, Dec 15 1999
Edited by Dean Hickerson, Sep 17 2002
Comments