A001066 Dimensions (sorted, with duplicates removed) of real simple Lie algebras.
3, 6, 8, 10, 14, 15, 16, 20, 21, 24, 28, 30, 35, 36, 42, 45, 48, 52, 55, 56, 63, 66, 70, 72, 78, 80, 90, 91, 96, 99, 104, 105, 110, 120, 126, 132, 133, 136, 143, 153, 156, 160, 168, 171, 182, 190, 195, 198, 210, 224, 231, 240, 248, 253, 255, 266, 272, 276, 286, 288, 300, 306
Offset: 1
Examples
6 is the dimension of the real simple Lie algebra SL_2(C).
References
- Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652.
- N. Jacobson, Lie Algebras. Wiley, NY, 1962; see pp. 141-146.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.Set (deleteFindMin, fromList, insert) a001066 n = a001066_list !! (n-1) a001066_list = f (fromList [h, 2 * h]) $ tail a003038_list where h = head a003038_list f s (x:xs) = m : f (x `insert` (( 2 * x) `insert` s')) xs where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Dec 16 2012
-
Mathematica
max = 18; sa = Table[k*(k+2), {k, 1, max}]; sb = Table[k*(2k+1), {k, 2, max}]; sd := Table[k*(2k-1), {k, 4, max}]; se = {14, 52, 78, 133, 248}; Select[ Union[sa, 2*sa, sb, 2*sb, sd, 2*sd, se, 2*se], # <= max^2 &] (* Jean-François Alcover, Apr 02 2012, after A003038 *)
Formula
Numbers n and 2n as n runs through A003038.
Extensions
Entry revised by N. J. A. Sloane, Mar 16 2007
Comments