cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A013642 Numbers k such that the continued fraction for sqrt(k) has period 2.

Original entry on oeis.org

3, 6, 8, 11, 12, 15, 18, 20, 24, 27, 30, 35, 38, 39, 40, 42, 48, 51, 56, 63, 66, 68, 72, 80, 83, 84, 87, 90, 99, 102, 104, 105, 110, 120, 123, 132, 143, 146, 147, 148, 150, 152, 156, 168, 171, 182, 195, 198, 200, 203, 210, 224, 227, 228, 230, 231, 235, 240, 255, 258, 260, 264
Offset: 1

Views

Author

Keywords

Comments

This sequence is identical to the sequence of numbers of the form k = a^2 + b, where a and b are positive integers and b is a factor of 2a greater than 1, in which case the continued fraction expansion of sqrt(k) is [a; [2a/b, 2a]]. - David Terr, Jun 11 2004

References

  • Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors!).

Crossrefs

Programs

  • Mathematica
    cf2Q[n_]:=Module[{s=Sqrt[n]},If[IntegerQ[s],1,Length[ ContinuedFraction[ s][[2]]]]==2]; Select[Range[300],cf2Q] (* Harvey P. Dale, Jun 21 2017 *)

A003038 Dimensions of split simple Lie algebras over any field of characteristic zero.

Original entry on oeis.org

3, 8, 10, 14, 15, 21, 24, 28, 35, 36, 45, 48, 52, 55, 63, 66, 78, 80, 91, 99, 105, 120, 133, 136, 143, 153, 168, 171, 190, 195, 210, 224, 231, 248, 253, 255, 276, 288, 300, 323, 325, 351, 360, 378, 399, 406, 435, 440, 465, 483, 496, 528, 561, 575, 595, 624, 630
Offset: 1

Views

Author

Keywords

Examples

			The Lie algebras in question and their dimensions are the following:
A_l: l(l+2), l >= 1,
B_l: l(2l+1), l >= 2,
C_l: l(2l+1), l >= 3,
D_l: l(2l-1), l >= 4,
G_2: 14, F_4: 52, E_6: 78, E_7: 133, E_8: 248.
		

References

  • Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652.
  • N. Jacobson, Lie Algebras. Wiley, NY, 1962; pp. 141-146.
  • I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal., 13 (1982), 988-1007.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequences, apart from some initial terms: A000217, A000384, A005563, A014105.

Programs

  • Haskell
    import Data.Set (deleteFindMin, fromList, insert)
    a003038 n = a003038_list !! (n-1)
    a003038_list = f (fromList (3 : [14, 52, 78, 133, 248]))
       (drop 2 a005563_list) (drop 4 a000217_list) where
       f s (x:xs) (y:ys) = m : f (x `insert` (y `insert` s')) xs ys where
         (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Dec 16 2012
  • Maple
    M:=4200; M2:=M^2; sa:=[seq(l*(l+2),l=1..M)]; sb:=[seq(l*(2*l+1),l=2..M)]; sd:=[seq(l*(2*l-1),l=4..M)]; se:=[14,52,78,133,248]; s:=convert(sa,set) union convert(sb,set) union convert(sd,set) union convert(se,set); t:=convert(s,list); for i from 1 to nops(t) do if t[i] <= M2 then lprint(i,t[i]); fi; od:
  • Mathematica
    max = 26; sa = Table[ k*(k+2), {k, 1, max}]; sb = Table[ k*(2k+1), {k, 2, max}]; sd:= Table[ k*(2k-1), {k, 4, max}]; se = {14, 52, 78, 133, 248}; Select[ Union[sa, sb, sd, se], # <= max^2 &](* Jean-François Alcover, Nov 18 2011, after Maple *)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004

A144025 Eigentriangle by rows, A001006(n-k)*A005773(k); 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 4, 2, 2, 5, 9, 4, 4, 5, 13, 21, 9, 8, 10, 13, 35, 51, 21, 18, 20, 26, 35, 96, 127, 51, 42, 45, 52, 70, 96, 267, 323, 127, 102, 105, 117, 140, 192, 267, 750, 835, 323, 254, 255, 273, 315, 384, 534, 750, 2123, 2188, 835, 646, 635, 663, 735, 864, 1068, 1500, 2123, 6046
Offset: 0

Views

Author

Gary W. Adamson, Sep 07 2008

Keywords

Comments

Left border = Motzkin numbers, A001006.
Right border = A005773.
Row sums = A005773 shifted: (1, 2, 5, 13, 35, 96, 267,...).
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
    1;
    1,   1;
    2,   1,   2;
    4,   2,   2,   5;
    9,   4,   4,   5,  13;
   21,   9,   8,  10,  13,  35;
   51,  21,  18,  20,  26,  35,  96;
  127,  51,  42,  45,  52,  70,  96, 267;
  323, 127, 102, 105, 117, 140, 192, 267, 750;
  835, 323, 254, 255, 273, 315, 384, 534, 750, 2123;
  ...
Row 3 = (4, 2, 2, 5) = termwise product of (4, 2, 1, 1) and the first 4 terms of A005773: (1, 1, 2, 5) = (4*1, 2*1, 1*2, 1*5). (4, 2, 1, 1) = the first 4 terms of A001066, reversed.
		

Crossrefs

Formula

Eigentriangle by rows: T(n,k) = A001006(n-k)*A005773(k); 0<=k<=n.

Extensions

a(53) corrected by Georg Fischer, Apr 29 2025
Showing 1-3 of 3 results.