A001096 a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5).
0, 1, 2, 3, 4, 5, 726, 5047, 20168, 60489, 151210, 332651, 665292, 1235533, 2162174, 3603615, 5765776, 8910737, 13366098, 19535059, 27907220, 39070101, 53721382, 72681863, 96909144, 127512025, 165765626, 213127227, 271252828, 342014429
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
Programs
-
GAP
List([0..35], n-> n + 720*Binomial(n,6)); # G. C. Greubel, Aug 26 2019
-
Magma
[n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5): n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
-
Maple
seq(n + 6!*binomial(n,6), n=0..35); # G. C. Greubel, Aug 26 2019
-
Mathematica
Table[n + 6!*Binomial[n,6], {n,0,35}] (* G. C. Greubel, Aug 26 2019 *)
-
PARI
vector(35, n, (n-1) + 6!*binomial(n-1,6)) \\ G. C. Greubel, Aug 26 2019
-
Sage
[n + 720*binomial(n,6) for n in (0..35)] # G. C. Greubel, Aug 26 2019
Formula
G.f.: x*(1 -5*x +10*x^2 -10*x^3 +5*x^4 +719*x^5)/(1-x)^7. - Ralf Stephan, Dec 30 2002
From G. C. Greubel, Aug 26 2019: (Start)
a(n) = n + 6!*binomial(n,6).
E.g.f.: x*(1 + x^5)*exp(x). (End)
Extensions
More terms from James Sellers, Sep 19 2000