cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258777 Number of points of projective spaces on finite fields.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 26, 28, 30, 31, 32, 33, 38, 40, 42, 44, 48, 50, 54, 57, 60, 62, 63, 65, 68, 72, 73, 74, 80, 82, 84, 85, 90, 91, 98, 102, 104, 108, 110, 114, 121, 122, 126, 127, 128, 129, 132, 133, 138, 140, 150, 152, 156, 158, 164, 168, 170, 174, 180, 182, 183, 192, 194, 198, 200
Offset: 1

Views

Author

Matthieu Pluntz, Jun 09 2015

Keywords

Comments

List of integers of form (p^(k*n) - 1)/(p^k - 1) = sigma_k(p^(n-1)) = sum of d^k over all divisors d of p^(n-1), for some prime p and some positive integers k and n. The cardinality of the field is p^k and the dimension of the space is n-1.
In other words, numbers that are a repunit in at least one base that is a prime power (A246655). - Peter Munn, Oct 21 2020

Examples

			7 = (2^(1*3) - 1)/(2^1 - 1) so 7 is in the sequence. 10 = (3^(2*2) - 1)/(3^2 - 1) so 10 is in the sequence.
		

Crossrefs

Union of 1, A090503 and (A246655 + 1).
Subsequence of A211347.

Programs

  • Mathematica
    max = 200; Join[{1}, Select[{#, DivisorSigma[Range[Max[1, Log[#, max] // Floor]], #]}& /@ Range[2, max], PrimePowerQ[#[[1]]]&][[All, 2]] // Flatten // Union] // Select[#, # <= max&]& (* Jean-François Alcover, Jun 24 2015 after Giovanni Resta *)
  • PARI
    list(lim)=my(v=List([1]),t); lim\=1; if(lim<2,lim=2); for(k=1,logint(lim - 1, 2), for(n=2,logint(lim*(2^k - 1) + 1, 2)\k, forprime(p=2,, t=(p^(k*n) - 1)/(p^k - 1); if(t>lim,break); listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jun 24 2015

A342307 Table read by ascending antidiagonals: T(n, k) is the maximum number of quasi k-gons that are not k-gons in a finite projective plane of order n, with k >= 3.

Original entry on oeis.org

126, 936, 2520, 3780, 41184, 25200, 11160, 287280, 1029600, 151200, 27090, 1294560, 12927600, 18532800, 529200, 57456, 4442760, 90619200, 439538400, 259459200, 846720, 110376, 12640320, 444276000, 4893436800, 12307075200, 2905943040, 0, 196560, 31346784, 1706443200, 34653528000, 222651374400, 295369804800, 26153487360, 0
Offset: 2

Views

Author

Stefano Spezia, Mar 08 2021

Keywords

Examples

			n\k |     3        4         5           6
----+-------------------------------------
  2 |   126     2520     25200      151200 ...
  3 |   936    41184   1029600    18532800 ...
  4 |  3780   287280  12927600   439538400 ...
  5 | 11160  1294560  90619200  4893436800 ...
...
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=k!Binomial[k-1,2]Binomial[n^2+n+1,k-1](n-1); Table[T[n-k+3,k],{n,2,9},{k,3,n+1}]//Flatten

Formula

T(n, k) = k!*binomial(k - 1, 2)*binomial(n^2 + n + 1, k - 1)*(n - 1).
Showing 1-2 of 2 results.